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Part I

Decomposition Methods
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Outline
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Integer programming: strength of models
Integer Programming Problems (IP):

zIP =min cx
subj . to Ax = b

x ≥ 0 and integer

can be solved by branch-and-bound using the Linear Programming (LP)
relaxation that results from relaxing the integrality conditions:

zLP =min cx
subj . to Ax = b

x ≥ 0

Crucial issue: some IP models are stronger, because their LP relaxations:
provide closer description of convex hull of valid integer solutions.
have LP optimal solution values closer to IP optimal solution values
(smaller gap).
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Motivation for branch-and-price
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Some strong IP models have an exponential number of variables.
Solve them combining column generation and branch-and-bound.
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Dantzig-Wolfe decomposition

May provide strong models (stronger than plain LP relaxation)...
... with an exponential number of variables.

min cx
suj . Ax = b

x ∈X
x ≥ 0 and integer

Constraints decomposed in two sets:
- first set: general constraints → Master Problem.

- second set: constraints with special structure → Subproblem
Subproblem must be amenable for separate solution.
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Dantzig-Wolfe decomposition: representation of a point

min cx
suj . Ax = b

x ∈X
x ≥ 0

Polyhedron X has I extreme points, denoted as X1,X2, . . . ,XI , and K
extreme rays, denoted as R1,R2, . . . ,RK .

Any point x ∈X is expressed as a convex combination of the
extreme points of X plus a non-negative combination of the extreme
rays of X :

X =
{
x =

I∑
i=1

λiXi +
K∑

k=1
µkRk ,

I∑
i=1

λi = 1,λi ≥ 0,∀i ,µk ≥ 0,∀k
}
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Dantzig-Wolfe decomposition: graphical representation
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X1,X2 and X3 are extreme points, and R1 and R2 are extreme rays.
Valid space is unbounded.
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Dantzig-Wolfe decomposition: graphical representation
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x is expressed as a convex combination of X1,X2 and X3 plus a
non-negative combination of R1 and R2.
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Some rewriting work...

replacing x in min{cx :Ax = b,x ∈X ,x ≥ 0}, we obtain

min c(
I∑

i=1
λiXi +

K∑
k=1

µkRk)

suj . A(
I∑

i=1
λiXi +

K∑
k=1

µkRk)= b

I∑
i=1

λi = 1

λi ≥ 0,∀i
µk ≥ 0,∀k
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Reformulation of the problem: master problem

min
I∑

i=1
(cXi )λi +

K∑
k=1

(cRk)µk

subj . to
I∑

i=1
(AXi )λi +

K∑
k=1

(ARk)µk = b

I∑
i=1

λi = 1

λi ≥ 0,∀i
µk ≥ 0,∀k

Decision variables: λi and µk .
Reformulated model is equivalent to original model.
Number of extreme points and extreme rays can be exponentially large.
Use column generation!
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Column generation

Solve linear programming relaxation using column generation:
Choose an initial restricted set of columns
While (there is a column with negative reduced cost) do

add column to restricted problem
reoptimize

End While

Restricted Master Problem Subproblem�

�

dual variables

attractive columns

[Dantzig, Wolfe, 1960; Ford, Fulkerson, 1958]
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Integrality property

If X does not have the integrality property, the reformulated model is
stronger than the linear programming relaxation.

Instead of searching extreme points and extreme rays in:

x ∈Conv {x ∈X },

search in:
x ∈Conv {x ∈X and integer}.

That may not be too hard: in the Cutting Stock Problem, we have to
find an integer solution of the subproblem (knapsack problem).
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Comparative strengths of 3 different models:

Integer programming model (IP)
Linear programming relaxation model (LP)
Dantzig-Wolfe decomposition model (DW)
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Three different models: IP, LP, DW

zIP =min cx
subj . to Ax = b

x ∈X
x ≥ 0 and integer

zLP =min cx
subj . to Ax = b

x ∈X
x ≥ 0

zDW =min cx
subj . to Ax = b

x ∈Conv {x ∈X and integer}
x ≥ 0
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Integer Problem: domain is a finite set of points
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zIP = mincx
subj . to A1x ≥ b1

A2x ≥ b2

x ≥ 0 and integer
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Linear programming relaxation
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zLP = mincx
subj . to A1x ≥ b1
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x ≥ 0
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A2x ≥ b2 does not have the integrality property
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x ∈Conv {A2x ≥ b2 and integer}
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Reformulated model

� � �

� �

�

�

�

�

��

� � �

�

�

� �

x2

x1

A1x ≥ b1

A2x ≥ b2

�

zDW = mincx
subj . to A1x ≥ b1

x ∈Conv {A2x ≥ b2 and integer}
x ≥ 0

Reformulated model is stronger than LP relaxation.
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If X is an integer polytope ⇒ same bound as LP

� � �

� �

�

�

�

�

��

� � �

�

�

� �

x2

x1

A1x ≥ b1

A2x ≥ b2

�

zLP = zDW , because X =Conv {x ∈X and integer} (compare models
presented before).
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Example

Integer programming:
max{x1 +x2 : 8x1 +5x2 ≤ 20,x1 +3x2 ≤ 6,x1,x2≥ 0 and integer}.

Several alternative integer optimal solutions: (x1,x2)= (2,0),(0,2)
and (1,1) have objective function value zIP = 2.

LP relaxation:
LP relaxation optimal solution is (x1,x2)= (30/19,28/19), with
objective function value zLP = 58/19= 3.053.

Integrality gap zLP −zIP equal to 1.053.
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Integer and linear programming relaxation domains
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zIP = max1x1 +1x2
subj . to 1x1 +3x2 ≤ 6

8x1 +5x2 ≤ 20
x1,x2 ≥ 0, integer
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Dantzig-Wolfe decomposition: Conv {x ∈X and integer}

Conv {x ∈X and integer} =Conv {(x1,x2) : 8x1+5x2 ≤ 20,x1,x2≥ 0 and integer}

The integer extreme points of set X are:

X1 =
(
0
0

)
,X2 =

(
2
0

)
,X3 =

(
0
4

)
and the corresponding polytope is:

Conv {x ∈X and integer} = {x ∈ IR2 :

(
x1
x2

)
=λ1

(
0
0

)
+λ2

(
2
0

)
+λ3

(
0
4

)
,

λ1 +λ2 +λ3 = 1,λ1,λ2,λ3 ≥ 0}.
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Dantzig-Wolfe decomposition: reformulation

max 1x1 +1x2
subj .to 1x1 +3x2 ≤ 6 (master problem)

8x1 +5x2 ≤ 20 (subproblem)
x1, x2 ≥ 0 and integer

c = (1,1), A1 = (1,3), A2 = (8,5), b1 = 6 and b2 = 20, for the extreme
points, we get:

cX1 = 1 1 ∗ 0 = 0
0

cX2 = 1 1 ∗ 2 = 2
0

cX3 = 1 1 ∗ 0 = 4
4

A1X1 = 1 3 ∗ 0 = 0
0

A1X2 = 1 3 ∗ 2 = 2
0

A1X3 = 1 3 ∗ 0 = 12
4
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Reformulated model (bounded case):

max
I∑

i=1
(cXi )λi

subj . to
I∑

i=1
(AXi )λi ≤ b

I∑
i=1

λi = 1

λi ≥ 0,∀i

maxzDW = 0λ1 +2λ2 +4λ3
subj . to 0λ1 +2λ2 +12λ3 ≤ 6

λ1 +λ2 +λ3 = 1
λ1, λ2, λ3 ≥ 0
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Solution of complete model with simplex method

Notice that the order of the columns was changed, in order to have the
identity matrix in the last two columns.

zDW λ2 λ3 s1 λ1
s1 0 2 12 1 0 6
λ1 0 1 1 0 1 1

1 -2 -4 0 0 0

zDW λ2 λ3 s1 λ1
λ3 0 1/6 1 1/12 0 1/2
λ1 0 5/6 0 -1/12 1 1/2

1 -4/3 0 1/3 0 2

zDW λ2 λ3 s1 λ1
λ3 0 0 1 1/10 -1/5 2/5
λ2 0 1 0 -1/10 6/5 3/5

1 0 0 1/5 8/5 14/5
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Optimal solution

λ2 = 3/5 and λ3 = 2/5, with objective function value 14/5.

Optimal solution in the original space is a convex combination of the
extreme points X2 e X3 with weights λ2 e λ3 :(

x1
x2

)∗
= 0

(
0
0

)
+3/5

(
2
0

)
+2/5

(
0
4

)
=

(
6/5
8/5

)

Integrality gap zDW −zIP reduced to 14/5−2= 0.8 (stronger model).
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A review of Linear Programming

Linear Programming (primal) maximization problem:

max cx
s .to Ax ≤ b

x ≥ 0

where x ∈ IRn,b ∈ IRm,A ∈ IRm×n.
In matrix form:

A I b

−c Λ0 0

A basic solution (basis) is characterized by a set of m linearly
independent columns, which form matrix B ∈ IRm×m.
cB ∈ IRm : vector of cost coefficients of the columns of B.

© J.M. Valério de Carvalho, UMinho Decomposition Methods for Integer Programming 29



Exchange of Basis

Pre-multiplying B and cB , the "matrix operator" performs an exchange of
basis:

* =
B−1 Λ0 B I

cBB−1 1 −cB Λ0

For the entire tableau:

* =
B−1 Λ0 A I b

cBB−1 1 −c Λ0 0

=
B−1A B−1 B−1b

cBB−1A−c cBB−1 cBB−1b
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Dual Problem and Optimality Conditions

min{yb : yA≥ c ,y ≥ 0} is the dual problem of max{cx :Ax ≤ b,x ≥ 0}.

y = cBB−1 is a dual solution, which is valid when dual constraints are
obeyed, i.e.:

yA≥ c ≡ cBB−1A−c ≥ 0
y ≥ 0 ≡ cBB−1 ≥ 0

Optimality conditions: if
solution is dual valid (as shown above),
solution is primal valid: x =B−1b ≥ 0, and
complementary slackness conditions are obeyed, then
finite optimal solution has value cBB−1b.
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Example

zDW λ2 λ3 s1 λ1
s1 0 2 12 1 0 6
λ1 0 1 1 0 1 1
zDW 1 -2 -4 0 0 0

Matrix B and corresponding cost vector cB :

λ3 λ1
B = 12 0

1 1

−cB = −4 0
Exchange of basis:

1/12 0 0 ∗ 12 0 = 1 0
−1/12 1 0 1 1 0 1

1/3 0 1 −4 0 0 0
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Initial and final basis
zDW λ2 λ3 s1 λ1

s1 0 2 12 1 0 6
λ1 0 1 1 0 1 1

1 -2 -4 0 0 0

zDW λ2 λ3 s1 λ1
λ3 0 1/6 1 1/12 0 1/2
λ1 0 5/6 0 -1/12 1 1/2

1 -4/3 0 1/3 0 2

* =
B−1 Λ0 A I b

cBB−1 1 −c Λ0 0

=
B−1A B−1 B−1b

cBB−1A−c cBB−1 cBB−1b
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Examples: B−1b, B−1AX2 and cBB−1AX2 −cX2

B−1b = 1/12 0 ∗ 6 = 1/2
−1/12 1 1 1/2

B−1AX2 = 1/12 0 ∗ 2 = 1/6
−1/12 1 1 5/6

cBB−1AX2 −cX2 = 1/3 0 ∗ 2 − 2=−4/3
1
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Solution of model with column generation

In this small example, it is easy to describe Conv {x ∈X and integer} using
only linear inequalities, and to obtain a polytope with integer extreme
points:

Conv {x ∈X and integer} = Conv {(x1,x2) : 8x1 +5x2 ≤ 20,x1,x2≥ 0 and integer} =
= {(x1,x2) : 2x1 +1x2 ≤ 4,x1,x2≥ 0}

Unfortunately, in general, for integer programming problems, that may
not be easy (exponential number of constraints needed).

Subproblem: pricing extreme points of Conv {X } out of the restricted
master problem:
Reduced cost of Xj : cBB−1Aj −cj (maximization problem)
Column is attractive if its reduced cost < 0
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Expression of reduced cost - I
maxzDW = 0λ1 +2λ2 +4λ3 (dual variable)
subj . to 0λ1 +2λ2 +12λ3 ≤ 6 (π1)

λ1 +λ2 +λ3 = 1 (u)
λ1, λ2, λ3 ≥ 0

Dual values of reformulated model: cBB−1 = π1 u

Structure of columns in reformulated model (main body of tableau):
upper part: results from changing variables in DW decomposition.
lower part: convexity constraint ( ∑

λ= 1)

Aj = A1Xj
1

Structure of columns in reformulated model (objective function):

cj = cXj
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Expression of reduced cost - II
By substitution, we obtain:

Reduced cost of column of the reformulated model expressed in terms of
original variables:

cBB−1Aj −cj = π1A1Xj +u∗1−cXj =
= (π1A1 −c)Xj +u

Transferral of dual information to subproblem:
we are now able to calculate the value of each point in Conv {X }

look for the most attractive point (should be an extreme point)
optimize the subproblem.

Insight: in the subproblem we have an objective function with:
cost coefficients of the original variables x1 and x2 given by elements
of the vector (π1A1 −c)

a constant term u
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Solution 1 (starting solution)

zDW s1 λ1
s1 0 1 0 6
λ1 0 0 1 1

1 0 0 0

Dual solution: π1 = 0,u = 0

Reduced cost:

(π1A1 −c)Xj +u = ( 0 ∗ 1 3 − 1 1 )

(
x1
x2

)
+0=

= −1 x1 −1 x2

and Subproblem 1 is equivalent to :

max x1 + x2
s. to x ∈Conv {x ∈X and integer}
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Solution 1 in the space of original variables
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To which solution in the space of the original variables x1,x2 does the
current solution λ1 = 1,λ2 =λ3 = 0 correspond ?
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Graphical solution of subproblem 1
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Which is the solution x ∈Conv {x ∈X and integer} that maximizes x1+x2?
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Insert column in restrict master problem and re-optimize

Solution of Subproblem 1

Optimal solution of subproblem 1 is X∗
j =X3 =

(
0
4

)
with objective solution

value 4.

zDW λ3 s1 λ1
s1 0 12 1 0 6
λ1 0 1 0 1 1

1 -4 0 0 0

zDW λ3 s1 λ1
λ3 0 1 1/12 0 1/2
λ1 0 0 -1/12 1 1/2

1 0 1/3 0 2

Dual solution: π1 = 1/3,u = 0
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Solution 2 in the space of original variables
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To which solution in the space of the original variables x1,x2 does the
current solution λ1 =λ3 = 1/2,λ2 = 0 correspond ?
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Second subproblem:

Reduced cost:

(π1A1 −c)Xj +u = ( 1/3 ∗ 1 3 − 1 1 )

(
x1
x2

)
+0=

= −2/3 x1 −0 x2

and Subproblem 2 is equivalent to :

max 2/3x1 + 0x2
s. to x ∈Conv {x ∈X and integer}
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Graphical solution of subproblem 2
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Which is the solution x ∈Conv {x ∈X and integer} that maximizes
2/3x1 + 0x2?
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Re-expressing the column

Optimal solution of subproblem 2 is X∗
j =X2 =

(
2
0

)
with objective solution

value 4/3.

To insert the new column AX2 =
(
2
1

)
in the simplex tableau, we need to

express it in terms of the current base:

B−1AX2 = 1/12 0 ∗ 2 = 1/6
−1/12 1 1 5/6

cBB−1AX2 −cX2 = 1/3 0 ∗ 2 − 2=−4/3
1

This step was skipped in the last iteration, because B−1 = I .
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Second iteration

zDW λ2 λ3 s1 λ1
λ3 0 1/6 1 1/12 0 1/2
λ1 0 5/6 0 -1/12 1 1/2

1 -4/3 0 1/3 0 2

zDW λ2 λ3 s1 λ1
λ3 0 0 1 1/10 -1/5 2/5
λ2 0 1 0 -1/10 6/5 3/5

1 0 0 1/5 8/5 14/5

Dual solution: π1 = 1/5,u = 8/5
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Solution 3 in the space of original variables
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To which solution in the space of the original variables x1,x2 does the
current solution λ2 = 3/5, λ3 = 2/5, λ1 = 0 correspond ?
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Subproblem 3

Reduced cost:

(π1A1 −c)Xj +u = ( 1/5 ∗ 1 3 − 1 1 )

(
x1
x2

)
+8/5=

= −4/5 x1 −2/5 x2 +8/5

and Subproblem 3 is equivalent to :

max 4/5x1 + 2/5x2 −8/5
s. to x ∈Conv {x ∈X and integer}

Solution of subproblem:
Optimal solution has objective function value equal to 0.
There are no attractive solutions.

Solution of reformulated problem is optimal.
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Lagrangean Relaxation vs. DW decomposition

zPI =min cx
s .to A1x ≥ b1

A2x ≥ b2

x ≥ 0 and integer

Strategy
keep a set of constraints in the problem (can be the empty set)
relax constraints in remaining set; move them to the objective
function, adding a penalty when they are not obeyed.
relaxed constraints are indirectly enforced choosing a suitable
penalty.
Problem RL(λ) is a relaxation of PI.
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Lagrangean problem

Lagrangean problem, RL(λ):

zRL(λ)=min cx +λ(b2 −A2x)

s .to A1x ≥ b1

x ≥ 0 and integer

where λ is a vector of non-negative Lagrange multipliers (λ≥ 0).

If a constraint of the second group is not obeyed, A2x < b2, then
λ(b2 −A2x) takes a positive value, which is a penalty for the objective
function.

Rule for building Lagrangean problem:
violating a constraint yields a penalty for the objective function, no
matter what are the type of constraints (≤,≥) and of the objective
function (max. or min.).
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Relation between Minimization Problems PI and RL(λ)

Problem RL(λ) is a relaxation of the original problem PI.

Theorem
The optimal value of the lagrangean problem, zRL(λ), is always less than
or equal to the value of the integer programming minimization
problem, zPI , for every λ≥ 0.

Proof: Any valid solution for problem PI is also valid for problem RL(λ),
because it obeys the 2 sets of constraints.

For any valid point x of problem PI, the lagrangean function
cx +λ(b2 −A2x)≤ cx , because λ≥ 0 and b2 −A2x ≤ 0.

In particular, this also happens for the optimal point of the integer
programming point. Thus, zRL(λ)≤ zPI . �
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Optimality conditions

Theorem
If, given a vector λ, the optimal solution x∗ of the lagrangean problem
satisfies the following conditions:

x∗ is an optimal solution of RL(λ),

A2x∗ ≥ b2,

λ(b2 −A2x∗)= 0,

then the solution x∗ is optimal for the original problem PI .

Proof: Solution x∗ obeys all constraints and
zRL(λ∗)=mincx∗+λ(b2 −A2x∗)= cx∗, which guarantees that the
solution is optimal for the original problem. �

The complementary slackness condition (third item) has to be fulfilled:
- A solution x obeying the relaxed constraints, A2x ≥ b2, may not be
optimal for the original problem PI if λ(b2 −A2x)< 0.
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Lagrangean dual problem

There is a value of λ∗ for which the lagrangean problem takes the
largest value:

zD = zRL(λ∗)=max
λ

zRL(λ).

Problem D is denoted as the lagrangean dual problem:

zD = max
λ

{mincx +λ(b2 −A2x)}

suj . A1x ≥ b1

x ≥ 0 and integer

usually solved with the subgradient method.
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Lagrangean dual problem

�

�

λ∗ λ

ZD
cX1 +λ(b2 −A2X1)

cX2 +λ(b2 −A2X2)

cX3 +λ(b2 −A2X3)

cX4 +λ(b2 −A2X4)

�

only the integer extreme points of {A1x ≥ b1,x ≥ 0 and integer} can
be optimal solutions of the lagrangean dual problem.
for each integer extreme point Xi ,cXi +λ(b2 −A2Xi ), i = 1,2, . . . , I , is
a function of λ.

function mincx +λ(b2 −A2x) is a concave piecewise linear function
(shown in bold).

lagrangean dual problem: find the value of λ that maximizes the function
mincx +λ(b2 −A2x)
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Lagrangean dual problem (another insight)

zD = maxw
s .to w ≤ cXi +λ(b2 −A2Xi ), i = 1,2, . . . , I

λ≥ 0
w unrestricted in sign

Decision variable w , for each value of λ, takes the value which is the
smallest, among all integer extreme points, Xi , of the values of the
function cXi +λ(b2 −A2Xi ).
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Example

Please note that the constraints are swapped (for personal reasons).

min −1x1 −1x2
s .to −8x1 −5x2 ≥ −20 ( kept in problem)

−1x1 −3x2 ≥ −6 ( relaxed)
x1, x2 ≥ 0 and integer

c = (−1,−1), A1 = (−8,−5), A2 = (−1,−3), b1 =−20 and b2 =−6, for the
extreme points, we get:

cX1 = −1 −1 ∗ 0 = 0
0

cX2 = −1 −1 ∗ 2 = −2
0

cX3 = −1 −1 ∗ 0 = −4
4

A2X1 = −1 −3 ∗ 0 = 0
0

A2X2 = −1 −3 ∗ 2 = −2
0

A2X3 = −1 −3 ∗ 0 = −12
4
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Example (cont.)

zD = maxw
s .to w ≤ cXi +λ(b2 −A2Xi ), i = 1,2, . . . , I

λ≥ 0
w unrestricted in sign

zD = maxw
s .to w ≤ 0−6λ

w ≤−2−4λ
w ≤−4+6λ
λ≥ 0
w unrestricted in sign
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Lagrangean dual function

�

�

λ

w

	
	
	
	
	
	
	
		























�
�
�
�
�
�
�
��

λ∗

1/5 1

−14/5

−6

The optimal solution is w =−14/5 and λ= 1/5, being the objective value
of the optimal solution −14/5.
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Building the dual of the Lagrangean Dual

Lagrangean dual has decision variables w and λ.

zD = maxw
w ≤ cXi +λ(b2 −A2Xi ), i = 1,2, . . . , I
λ≥ 0
w unrestricted in sign

Dual variables: µi for each constraint i , i = 1,2, . . . , I ,

lagrangean dual has an exponential number of constraints.
dual of lagrangean dual has an exponential number of decision
variables.
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Lagrangean dual - I
Lagrangean dual:

zD = maxw
s .to w ≤ cXi +λ(b2 −A2Xi ), i = 1,2, . . . , I

λ≥ 0
w unrestricted in sign

Dual of Lagrangean dual:

zd
D = min

I∑
i=1

(cXi )µi

s .to
I∑

i=1
−(b2 −A2Xi )µi ≥ 0

I∑
i=1

µi = 1

µi ≥ 0
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Lagrangean dual - II

As ∑I
i=1b

2µi = b2 ∑I
i=1µi = b2, rewrite the problem as:

zd
D = min

I∑
i=1

(cXi )µi

s .to
I∑

i=1
(A2Xi )µi ≥ b2

I∑
i=1

µi = 1

µi ≥ 0

This model is the Dantzig-Wolfe decomposition that results from keeping
in the master problem the set of constraints A2x ≥ b2 and putting in the
subproblem the set of constraints A1x ≥ b1.
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Example:

Lagrangean dual:

zD = maxw
s .to w ≤ 0−6λ

w ≤−2−4λ
w ≤−4+6λ
λ≥ 0
w unrestricted in sign

Dual of Lagrangean dual:

min 0µ1 −2µ2 −4µ3
s .to 0µ1 −2µ2 −12µ3 ≥ −6

µ1 +µ2 +µ3 = 1
µ1, µ2, µ3 ≥ 0
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Concluding remarks

decomposition is a general tool to convert a difficult problem into a
sequence of manageable problems.
models from decomposition may be stronger.
column generation has profited from developments in LP software.
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Part II

Applications
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Outline

Reasons for using decomposition
Block angular structure: examples
Solving LP relaxations with column generation
Application: Cutting Stock (CSP) and Bin Packing (BPP) Problems
Application: Vehicle routing
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Reasons for using decomposition

Models from DW decomposition:
become manageable in size: number of constraints is reduced and
column generation is used.
are suitable to deal with non-linear constraints: they are tackled in a
dynamic programming subproblem.
may be stronger: subproblems do not have the integrality property.
may be the only models at hand, because compact models may not
be known.
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General structure: block angular with linking constraints

DW decomposition partitions model into levels: Main problem and
subproblem(s) (or Master and slave(s)).
Subproblem(s) has(ve) nice structure that can be exploited (e.g.,
network).

D

A1

. . .

Ah

Block D - Linking constraints
Each of the blocks A1, . . . ,Ah defines a different subproblem
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Examples of models resulting from structured problems

Problem D block A blocks
Production
planning

Availability of common
resources required for
production (e.g., ma-
chine capacities).

One block for each product.
Production requirements of each
product (for example, forced by
existing demand).

Vehicle
routing

Constraints imposed
on the fleet of vehicles
(e.g., it must visit all
the clients).

One for each vehicle.
Route and vehicle constraints
(e.g., a route must end at a de-
pot and vehicle capacity cannot
be exceeded).

Generalised
assignment

Constraints imposed
on the group of agents
(all the tasks must be
performed).

One for each agent, related with
its capacity.

Machine
scheduling

Job constraints (e.g.,
all jobs must be done).

One for each machine.
Machine constraints (e.g., two
tasks cannot be made at the
same time).
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Decomposition framework

Master Problem (MP)
"combines" independent solutions of SPs
constraints in MP tell how resources are used by subproblem
solutions

Subproblem(s) (SP)
usually subproblem solutions are paths.
difficult constraints (non-linearities) are tackled in the subproblem
(solved with dynamic programming)
SP use resources when economically efficient
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Economic interpretation of DW decomposition

Master Problem (MP)
controls usage of resources: tells SP the price of the usage of resources

MP

SP1 SP2 . . . SPh

6

?�
�
�
�
�
���
�
�
�
�
�� C

C
C
C
C
COC
C
C
C
C
CW

Subproblem(s) (SPs)
compete for resources: each SP makes its best bid to MP
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Application I

Cutting Stock Problem (CSP) and Bin Packing Problem (BPP)
Kantorovich model
Gilmore-Gomory model
Solution of Gilmore-Gomory model by column generation
Example (solution of LP relaxation)
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Cutting Stock Problem
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W: width of large rolls
wi : width of rolls for client i , i = . . . ,m
bi : demand of rolls of width wi (many items of each size)
Objective: cut the minimum number of rolls to satisfy demand.
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Cutting and packing problems

Bin packing problem:
given an unbounded number of bins of capacity W and a list of n
items of size wi , 0<wi ≤W , i = 1, . . . ,n,

pack all the items in the smallest number of bins without exceeding
their capacity.

few items of each size.

Cutting stock problem:
given an unbounded number of rolls of size W, and given m clients
with demands of bi rolls of size wi , 0<wi ≤W , i = . . . ,m,

cut the minimum number of rolls to satisfy demand.

many items of each size.
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Cutting Stock Problem: a weak model

Decision variables xij =
{

1 , if item j is placed in roll i
0 , otherwise

Decision variables yi =
{

1 , if roll i is used
0 , otherwise

minzIP =
n∑

i=1
yi

subj. to
n∑

j=1
wjxij ≤Wyi , ∀i ∈ I

n∑
i=1

xij = 1, ∀j ∈ J

yi = 0 or 1, ∀i
xij = 0 or 1, ∀i , j

L. Kantorovich, "Mathematical methods of organising and planning
production" (translated from a paper in Russian, dated 1939),
Management Science 6, 366–422, 1960.
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Quality of the relaxation: value of the lower bound

LP relaxation: replace the last two constraints by 0≤ yi ≤ 1,∀i , and
0≤ xij ≤ 1,∀i , j , respectively.
LP relaxation optimum, z∗LP , is a lower bound for the IP optimum.

Proposition (Martello and Toth, 90)
Lower bound LB1 = d∑n

i=1wi /W e.

Proof: No solution can have an objective value lower than ∑n
i=1wi /W .

Solution xii = 1,xij = 0,∀j 6= i , and yi =wi /W ,∀i , has an objective value,
z∗LP =∑n

i=1wi /W , equal to that value. So, it is an optimal LP solution.

Round up, because the number of bins must be integer.

Bound can be very poor for instances with large loss: there may be cases
in which z∗LP → 1/2 zIP .
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Example: Bins of capacity 8 and 16 items of size 5

Integer optimum is 16: Linear relaxation optimum is 10:

5

3

5

3

5

3

5

3

5

3

5

3

5

3

5

3

5

3

5

3

5

3

5

3

5

3

5

3

5

3

5

3

x11 = 1 , y1 = 5/8
x22 = 1 , y2 = 5/8

. . . . . .
x16,16 = 1 , y16 = 5/8

∑
i yi = 10

Gap between Integer and Linear Relaxation optima, zIP −zLP = 6.
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Cutting Stock Problem: Gilmore-Gomory model

Cutting Pattern: possible arrangement of items in the roll:
m∑

i=1
aijwi ≤W

aij ≥ 0 and integer, ∀j ∈ J .

aij : number of items of width wi obtained in the cutting pattern j
J : set of valid cutting patterns.
xj : number of rolls cut according cutting pattern j .

min zIP = ∑
j∈J

xj

subj . to
∑
j∈J

aijxj ≥ bi , i = 1,2, . . . ,m

xj ≥ 0 and integer, ∀j ∈ J
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Example (cont.): Bins of capacity 8 and 16 items of size 5

The only valid Mathematical formulation:
cutting pattern is:

5

3

min zLP = x1
subj. to 1x1 ≥ 16

x1 ≥ 0

Optimal value of linear relaxation zLP = 16, when x1 = 16.

Gap between Integer and Linear Relaxation optima, zIP −zLP = 0.
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Gilmore-Gomory’s bound in practice

Bound given by the LP relaxation of Gilmore-Gomory’s model is very
tight.
Most of the one-dimensional cutting stock instances have gaps
smaller than one.
There are instances with gaps equal to 1 (O.Marcotte’1985,86).
Largest gap known is 7

6 (Rietz,Scheithauer’2002).
Conjecture: all instances have gaps smaller than 2 (modified integer
round-up property) (Scheithauer,Terno’1995).
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Column generation for CSP [Gilmore, Gomory, 1961]

Generally, it is unpractical to enumerate all valid cutting patterns.

Solve linear programming relaxation of CSP using column generation:
Choose an initial restricted set of cutting patterns
While (there is an a attractive cutting pattern) do

add attractive cutting pattern to restricted problem
reoptimize

End While

To get an integer solution, round up fractional values of cutting patterns.
Solutions are of good quality, if the quantities demanded are high.
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Cutting Stock Problem: Restricted Problem

min zLP = ∑
j∈J

xj

subj .to
∑
j∈J

aijxj ≥ bi , i = 1,2, . . . ,m

xj ≥ 0, ∀j ∈ J ,

J : subset of cutting patterns in restricted problem
π=π(J)= (π1,π2, . . . ,πm) : optimal dual solution with subset J

Pricing cutting patterns out of the restricted problem:

Reduced cost of cutting pattern j = cj −cBB−1Aj =

= 1−
m∑

i=1
aijπi

Column is attractive if its reduced cost < 0
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Cutting Stock Problem: objective function of subproblem

Find most attractive cutting pattern ∈ J \J :

min
j∈J\J

1−
m∑

i=1
aijπi

Columns in J have reduced costs ≥ 0; so, search over J :

min
j∈J

1−
m∑

i=1
aijπi

Maximize symmetric function:

min
j∈J

1−
m∑

i=1
aijπi ≡ max

j∈J

m∑
i=1

aijπi −1
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Cutting Stock Problem: knapsack subproblem

Knapsack subproblem:
max zs =

m∑
i=1

πiyi

subj . to
m∑

i=1
wiyi ≤W

yi ≥ 0 and integer, i = 1,2, . . . ,m,

yi : number of items of size wi in the new cutting pattern

If optimum z∗s > 1, cutting pattern is attractive.
If no attractive columns, solution is optimal.
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(Very Small) Example

44 4

4

2

2

2

2
2

2

2

3 3

3
3 2

2

cutting patterns
W = 8 x1 x2 x3 x4 x5 x6

Demand bi

wi = 4 2 1 1 ≥ 5
3 1 2 1 ≥ 4
2 2 1 2 4 ≥ 8

min 1 1 1 1 1 1
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(Very Small) Example (cont.)

cutting patterns
W = 8 x1 x2 x3 x4 x5 x6

Demand bi

wi = 4 2 1 1 ≥ 5
3 1 2 1 ≥ 4
2 2 1 2 4 ≥ 8

min 1 1 1 1 1 1

Optimal fractional solution
2.5 2.0 1.5 6 rolls

Fractional solution rounded up
3.0 2.0 2.0 7 rolls

Excess production: 1 item of width 4 and 2 items of width 2
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Restricted problem: first iteration

Initial solution: 3 columns, each with items of the same size (as
suggested by Gilmore and Gomory’61).

Using an LP solver, we obtain the following optimal solution (primal and
dual):

x1 x2 x3 dual
wd = 4 2 ≥ 5 0.5

3 2 ≥ 4 0.5
2 4 ≥ 8 0.25

min 1 1 1

primal 2.5 2.0 2.0 z0 = 6.5
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Subproblem: first iteration

max zs = 0.5y1+ 0.5y2+ 0.25y3
subj . to 4y1+ 3y2+ 2y3 ≤ 8

yj ≥ 0 and integer,∀j

States

0
1
2
3
4
5
6
7
8

Stages
0 1 2 3 4

	

	

	

	

	

	

	

	 	

	

	

	

	

	

	

	

	

	

	

0
0.5

1

0
0.5

1

0
0.5

0

0
0.25
0.5
0.751

0
0.25

0.5
0
0.25

0.5

0
0.25
0

0

0

0

0

0

0

0

0

0

Optimal solution: (y1,y2,y3)= (0,2,1),z∗
s = 1.25→ Attractive
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Subproblem: knapsack problem
Dynamic programming
Fi (x) : maximum value from placing items with index less than or
equal to i using x units of space.
Recursive equations of Knapsack Problem with upper bounds on
variables:

F0(0) = 0
Fi (x) = max

x−lwi≥0
{Fi−1(x − lwi )+ lπi : 0≤ l ≤ lmax

i },

x = 0,1, . . . ,W ; i = 1,2, ...,m.

Largest number of items of a given size in a cutting pattern
(element aij in column j) must also be less than or equal to the
demand of that size:

lmax
i = amax

ij = min
{
bi ,

⌊W
wi

⌋}
Computational complexity is O(mW 2)
weakly NP-hard (pseudo-polynomial)
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Restricted problem: second iteration

Attractive cutting pattern: 2 items of size 3 and 1 item of size 2.

Insert attractive column in the restricted problem, and reoptimize.

Optimal solution:

x1 x2 x3 x4 dual
wd = 4 2 ≥ 5 0.5

3 2 2 ≥ 4 0.375
2 4 1 ≥ 8 0.25

min 1 1 1 1

primal 2.5 0.0 1.5 2.0 zLP = 6.0
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Subproblem: second iteration

max zs = 0.5y1+ 0.375y2+ 0.25y3
subj . to 4y1+ 3y2+ 2y3 ≤ 8

yj ≥ 0 and integer,∀j

States

0
1
2
3
4
5
6
7
8

Stages
0 1 2 3 4

	

	

	

	

	

	

	

	 	

	

	

	

	

	

	

	

	

	

	

0
0.5

1

0
0.375

0.75

0
0.375

0

0
0.25
0.5
0.751

0
0.25

0.5
0
0.25

0.5

0
0.25
0

0

0

0

0

0

0

0

0

0

Alternative optima (Value z∗
s = 1.0)→ No attractive columns. So...
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Optimal solution of the linear relaxation

x1 x2 x3 x4 dual
wd = 4 2 ≥ 5 0.5

3 2 2 ≥ 4 0.375
2 4 1 ≥ 8 0.25

min 1 1 1 1

primal 2.5 0.0 1.5 2.0 zLP = 6.0

4

4

3
3
22

2
2
2

A1 A3 A4

xj = 2.5 1.5 2.0
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Strengthening the formulation
LP relaxation has an optimal value zLP . Optimal solution has an integer
value.
Round-up: use a number of rolls ≥ LP optimum rounded up:∑

j∈J
xj ≥ dzLPe

In this case, zLP is integer: new constraint does not change the optimal
solution.

x1 x2 x3 x4 dual
wd = 4 2 ≥ 5 0.5

3 2 2 ≥ 4 0.375
2 4 1 ≥ 8 0.25

round-up 1 1 1 1 ≥ 6 0.0
min 1 1 1 1

primal 2.5 0.0 1.5 2.0 zLP = 6.0

Easy to transfer dual information to subproblem.
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Application II

Vehicle Routing Problem with Time Windows
Flow model
Reformulated model
Subproblem
Dealing with subproblem
Resource constraints: a general framework
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Vehicle Routing Problem with Time Windows

Statement
Given

a set of vehicles with given capacities,
a set clients with given demands and time windows,

find
a set of routes, all starting and ending at the depot,
such that each client is visited by one vehicle in a way that
minimizes costs.

© J.M. Valério de Carvalho, UMinho Decomposition Methods for Integer Programming 94



A set of routes
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Mathematical model

Set of clients N = {1,2, . . . ,n}

demands di , i ∈N
time windows [ai ,bi ], i ∈N .

Set of homogeneous vehicles {1,2, . . . ,K }

K is known
capacity Q
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Mathematical model

Single depot, which is the origin and the destination of all vehicle routes:
split into 2 nodes:

origin node o ≡ vertex 0
destination node d ≡ vertex n+1
no demand: d0 = dn+1 = 0
time windows [a0,b0]= [an+1,bn+1]
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Mathematical model

Graph G = (V ,A)

V =N ∪ {o,d} represents the set of nodes
A the set of oriented arcs.

arc (i , j) ∈A⊂V ×V :
cij : cost incurred in travelling through the arc
tij : travel time (includes service time of node i)
for an arc to be feasible,

ai + tij ≤ bj

The optimization objective of the plan is to minimize the total cost of
the vehicles routes.
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Mathematical model

Feasible route: path p = (v0,v1, . . . ,vH)

starts at origin node (v0 = o)

ends at destination node (vH = d)

visits customers vi ∈N , i = 1, . . . ,H −1
obeys capacity constraints ∑H−1

i=1 di ≤Q
obeys time windows:

T0 = av0

Ti+1 = max{avi+1,Ti + tvi ,vi+1 } ≤ bvi+1 , ∀i = 0, . . . ,H −1
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Decision variables

Flow variables:

xk
ij =

{
1 , if vehicle k travels from client i to client j
0 , otherwise

∀k = 1, . . . ,K ,(i , j) ∈A

Time variables:
T k

i : start of service of vehicle k at node i
∀k = 1, . . . ,K , i ∈V
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Model with arc variables

min
K∑

k=1

∑
(i ,j)∈A

cijxk
ij (1)

s .to
K∑

k=1

∑
(i ,j)∈δ+(i)

xk
ij = 1, ∀i ∈N (2)

∑
(0,j)∈δ+(0)

xk
0j = 1, ∀k = 1, . . . ,K (3)

∑
(i ,j)∈A

dixk
ij ≤Q, ∀k = 1, . . . ,K (4)

∑
(i ,j)∈δ−(j)

xk
ij =

∑
(j ,i)∈δ+(j)

xk
ji , ∀j ∈N ,k = 1, . . . ,K (5)

∑
(i ,d)∈δ−(d)

xk
id = 1, ∀k = 1, . . . ,K (6)

T k
i −T k

j +Mxk
ij ≤M− tij , ∀k = 1, . . . ,K ,(i , j) ∈A (7)

ai ≤T k
i ≤ bi , ∀k = 1, . . . ,K , i ∈V (8)

xk
ij ∈ {0,1}, ∀k = 1, . . . ,K ,(i , j) ∈A (9)
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Time constraints (7)

T k
i −T k

j +Mxk
ij ≤M− tij , ∀k = 1, . . . ,K ,(i , j) ∈A

M = bi −aj + tij provides a tighter constraint
an alternative way of expressing constraint is the non-linear
constraint:

(T k
i −T k

j + tij)xk
ij ≤ 0, ∀k = 1, . . . ,K ,(i , j) ∈A
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Dantzig-Wolfe decomposition

Keep in the master problem the partitioning constraints
Remaining constraints in subproblem k
Subproblem k finds solutions which are elementary shortest paths
with capacity constraints and time windows
extreme points are feasible route ≡ paths
each decision variable corresponds to a path for vehicle k
if the fleet is homogeneous, all blocks are identical
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Reformulated model

Pk : set of feasible routes for vehicle k, each obeying the constraints,
yk

p ∈ {0,1} : vehicle k does route p ∈Pk

ck
p =∑h

i=0 c
k
vi ,vi+1 : cost of vehicle k in path p ∈Pk

min
K∑

k=1

∑
p∈Pk

ck
p yk

p

s. to
K∑

k=1

∑
p∈Pk

δk
ipy

k
p = 1 , ∀i ∈V

∑
p∈Pk

yk
p = 1, k = 1, . . . ,K

yk
p ∈ {0,1}, ∀p ∈Pk ,k = 1, . . . ,K

where

δk
ip =

{
1 , if route p of vehicle k visits client i
0 , otherwise
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Reformulated model with all vehicle identical
P =Pk , k = 1, . . . ,K : all vehicles are identical
convexity constraints ∑

p∈Pk yk
p = 1, k = 1, . . . ,K can be aggregated

into a single constraint ∑K
k=1

∑
p∈Pk yk

p =K .

Vehicles with path (o,d) do not leave the depot;
they act as slack variables: above constraint is a ≤ constraint.
Using yp =∑K

k=1 y
k
p , then

min
∑
p∈P

cpyp

s. to
∑
p∈P

δipyp = 1 , ∀i ∈V∑
p∈P

yp ≤K

yp ∈ {0,1}, ∀p ∈P
where

δip =
{

1 , if route p visits client i
0 , otherwise
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Example with 8 clients

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15
node 1 1 1 1 1 1 1 = 1

2 1 1 1 1 1 1 1 = 1
3 1 1 1 1 1 1 = 1
4 1 1 1 1 = 1
5 1 1 1 = 1
6 1 1 1 1 = 1
7 1 1 1 1 1 = 1
8 1 1 1 1 1 = 1

vehicles 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ≤ 4
cost 8 7 10 9 8 7 10 11 7 6 10 9 10 12 7
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Subproblem

Find path with minimum reduced cost:

min
∑

(i ,j)∈A
c ijxij

s .to
∑

(0,j)∈δ+(0)
x0j = 1

∑
(i ,j)∈A

dixij ≤Q

∑
(i ,j)∈δ−(j)

xij =
∑

(j ,i)∈δ+(j)
xji , ∀j ∈N

(Ti −Tj + tij)xij ≤ 0, ∀(i , j) ∈A
ai ≤Ti ≤ bi , ∀i ∈V
xij ∈ {0,1}, ∀(i , j) ∈A

© J.M. Valério de Carvalho, UMinho Decomposition Methods for Integer Programming 107



Subproblem

Elementary Shortest Path Problem with Time Windows and Capacity
constraints (ESPPTWC)

path p
starts at origin node o, and ends at destination node n+1
obeys capacity constraints
obeys time windows, and
with minimum reduced cost cp =∑c ijxij

Reduced costs of arcs:
c ij = cij −πi , ∀(i , j) ∈A, i 6= o
c ij = cij −µ, ∀(o, j) ∈A, where
πi : dual variable of visit constraint to node i ,
µ : dual variable of number of vehicles constraint

arcs with negative reduced cost induce negative cost cycles in the
network!
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ESPPTWC

Dynamic programming
F (S , i ,t) : minimum cost of path from o to i , i ∈N ∪ {d}, visiting all
nodes in set S ⊆N ∪ {d} only once, and servicing node i at time t or
later.
Recursive equations:

F (;,o,a0) = 0
F (S , j ,t) = min(i ,j)∈A{F (S − {j}, i ,t ′)+cij :

i ∈ S − {j},t ′ ≤ t − tij ,ai ≤ t ′ ≤ bi },
∀S ⊆N ∪ {d}, j ∈ S ,aj ≤ t ≤ bj

Optimal solution:

min
S⊆N∪{d}

min
ad≤t≤bd

F (S ,d ,t)

Strongly NP-hard (and very hard to solve in practice)
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SPPTWC

Relax elementary path requirement to get an easier problem:
Shortest Path Problem with Time Windows and Capacity constraints

F (i ,t) : minimum cost of path from o to i , i ∈N ∪ {d}, and servicing
node i at time t or later.
Recursive equations:

F (o,a0) = 0
F (j ,t) = min(i ,j)∈A{F (i ,t ′)+cij :

i ∈N ∪ {d}− {j},t ′ ≤ t − tij ,ai ≤ t ′ ≤ bi },
∀j ∈N ∪ {d},aj ≤ t ≤ bj

Optimal solution:

min
ad≤t≤bd

F (d ,t)

now, node i can be visited more than once in path p,
in the RMP, we get coefficients δip that may be larger than 1.
Weakly NP-hard (pseudo-polynomial)
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Different relaxations of ESPPTWC

It is possible to design a dynamic programming recursion that eliminates
some of the cycles generated in the solution of the subproblem.

SPPTWC: all cycles are allowed
SPPTWC-2-cycles: 2-cycles are not allowed
SPPTWC-k-cycles: cycles of length ≤ k are not allowed

Trade-off:
larger values of k produce stronger LP-relaxation of master problem
larger values of k induce much more complex recursion, more
difficult to code
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Shortest path problem with resource constraints (SPPRC)

Desrochers’86:
Generalization when there is a set of resources

Set of resources R
travel time tij is replaced by the consumption of tr

ij units of
resource r ,∀r ∈R
time interval constraint [ai ,bi ] of node i is replaced by |R |
constraints [ar

i ,br
i ], ∀r ∈R

T r
i : amount of resource r used to reach node i , starting from o

a path using less than ar
i resources to reach node i wastes some

resources and is feasible
a path using more than br

i resources to reach node i is infeasible
For an arc (i , j) to be feasible

ar
i + tr

ij ≤ br
j , ∀r ∈R
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SPPRC

extension of classical shortest path problem
cost is replaced by multidimensional resource vector
resources are accumulated / propagated along arcs
resource values are constrained at the nodes
Additional material

S. Irnich and D. Villeneuve, The Shortest-Path Problem with
Resource Constraints and k-Cycle Elimination for k ≥ 3, INFORMS
Journal on Computing 18(3), pp. 391.406, 2006.
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Concluding remarks

column generation is an intuitive framework.
very effective in many applications.
field is growing.

© J.M. Valério de Carvalho, UMinho Decomposition Methods for Integer Programming 114



Part III

Branch-and-price algorithms
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Outline

Partition and branching
Compatibility between master and sub-problem
Coping with changes in sub-problem
Application (binary variables): parallel machine scheduling
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Getting integer solutions with branch-and-price

Branch-and-price = branch-and-bound + column generationq q qqq q qq
q qq q qqq
q

q q q
��

@
@@

@@ �
��@
@@��

�
�
�
�
�@

@
@@

@@��

Methodology
Branching constraints are introduced in the restricted master.
After branching, deep in the tree, new columns may be needed.
Column generation still has to work correctly.
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Compatibility between Master Problem and Subproblem

Structure of the restricted master problem
Branching constraints change the structure of the restricted master
problem.
Subproblem has to identify correctly the attractive and
non-attractive columns with respect to the new structure.

Compatible (or robust) branching scheme
Desirably, subproblem should be the same optimization problem
both during the linear relaxation and branch-and-price.

Coping with changes
Branching scheme should not induce intractable changes in the
structure of the subproblem.
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Branching schemes

Branching on variables of the reformulated model
Regeneration of variables: a column set to zero by a branching
constraint in the restricted master problem may turn out to be the
most attractive column generated by the subproblem.

Branching on original variables
Original variables: variables of model to which the Dantzig-Wolfe
decomposition is applied.
Successful in many applications.
Often, original variables are related with flows in arcs.
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A review of Partition and Branching

Each node of a branch-and-bound tree corresponds to a set of solutions
obeying the constraints of the original problem and all branching
constraints down to the node.

Partition:
divides set of solutions into (desirably) mutually exclusive subsets,
(should be a polynomial number of subsets),
(desirably) corresponding to problems of the same type,
eliminating the fractional solution of the node.
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Basic and balanced branching schemes

Basic branching rule: pick fractional xij and create 2 branches:

xij ≤ bxijc
and

xij ≥ dxije

Acting on a single variable may lead to a dive in the branching tree
where no solutions will be found, and we still have to explore the
other branch.
Usually, better branching rules can be devised leading to more
balanced trees, where we expect the subtrees to be of similar size.
Branching schemes with unbalanced trees may perform very well on
some instances, but very poorly on others.
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Balanced branching schemes

Example 1: x1 +x2 +x3 +x4 +x5 +x6 = 1
Given the fractional solution x1 = 2/3 and x6 = 1/3,

instead of using pair of branching constraints x1 ≥ 1 and x1 ≤ 0,

use x1 +x2 +x3 ≥ 1 and x1 +x2 +x3 ≤ 0

Example 2: problems based on flows on arcs:
For each node i , compute outflows ∑

j∈J xij

Select set of successors J : ∑
j∈J xij has a fractional value α,

Use branching constraints:∑
j∈J xij ≥ dαe∑
j∈J xij ≤ bαc
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Example

left branch: x12 +x13 ≥ 2
right branch: x12 +x13 ≤ 1

2

3
0,5

1
3

1,0

1
44

0,5

5

1,0
2,0

Figure shows part of a network
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Selection of branching constraint

Branch first on decisions that have a larger impact on the solution.

Example 1: variable size bin-packing problem
use a two-level branching scheme:
branch first on bins until a bin integer solution is found, and then
branch on items.
in both levels, start with larger pieces (bins and items).
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Branching in branch-and-price

Binary variables
Ryan and Foster’s rule for set partitioning problems
Application: GAP
Application: BCSP
Application: multicommodity flow problems
Application: vehicle routing

General integer variables
general strategy
adding branching constraints to the master problem explicitly
Application: Cutting Stock Problems
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Set partitioning problems

S : finite set with m elements,
S1,S2, . . . ,Sn, a collection of subsets of S .

A partition of S is a collection of subsets, Si1 , . . . ,Sij , . . . ,SiK ,
identified by i1, . . . , ij , . . . , iK , such that:

∪k
j=1Sij = S

Sii ∩Sij = ;, ∀i , j
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Ryan and Foster’s rule (1981) for set partitioning problems

Branches on variables of set partitioning problem:
min{cx :Ax = 1,x ∈ {0,1}n}, and A ∈ {0,1}m×n.

In the optimal integer solution of a set partitioning problem, each
row is covered by ?exactly? one column (variable).

Proposition
Given a fractional solution to Ax = 1,x ≥ 0, there are rows r and s such
that 0<∑

j:arj=asj=1 xj < 1.

Many reformulated (column generation) models are set partitioning
problems.
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Branching rule

xj1 xj2

r 1 1 = 1

s 1 = 1

Branching rule: create two branches
in left branch, rows r and s are covered by the same columns, i.e.,∑

j:arj=ars=1 xj = 1.

in right branch: rows r and s are covered by different columns, i.e.,∑
j:arj=ars=1 xj = 0.
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Example

x1 x2 x3 x4 x5 x6 x7
1 1 1 1 1 = 1
2 1 1 1 1 = 1
3 1 1 1 1 = 1
0.5 0.5 0.5

For rows 1 and 2:
left branch: x2 +x7 = 1
right branch: x2 +x7 = 0
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Dealing with branching constraints

xj1 xj2

r 1 1 = 1

s 1 = 1

A column j is feasible in the master problem,
in left branch: if (arj = asj = 1) or (arj = asj = 0)

in right branch: if (arj = asj = 0) or (arj = 1,asj = 0) or
(arj = 0,asj = 1).

In the subproblem,
in left branch: only accept solutions in which row 1 and 2 are both
covered
in right branch: if solution covers one row, the other must not be
covered
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Example: generalized assignment problem (GAP)

maximize profit of assigning a set of jobs to agents with
capacities Wi ,∀i .
job j uses wij units of capacity of agent i .

assignment variables xij =
{

1 , if job j is assigned to agent i
0 , otherwise

maxz =
m∑

i=1

n∑
j=1

pijxij

subj. to
n∑

j=1
wijxij ≤Wi , i = 1, . . . ,m

m∑
i=1

xij = 1, j = 1, . . . ,n

xij ∈ {0,1}, ∀i , j

Applications: in vehicle routing, resource scheduling, ...
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Reformulated (set partitioning) model

Ki = {x i
1,x i

2, . . . ,x i
ki

} : set of all feasible assignments to agent i , ∀i .
feasible assignment is a 0,1 vector x i

k = (x i
1k ,x i

2k , . . . ,x i
nk).

ref. variables: y i
k =

{
1, if feasible assignment x i

k is used for agent i
0, otherwise

∀i = 1, . . . ,m, k ∈Ki .

maxz = ∑
i=1,...,m, k∈Ki

(
n∑

j=1
pijx i

jk)y i
k

subj. to
∑

i=1,...,m, k∈Ki

x i
jky

i
k = 1, j = 1, . . . ,n∑

k∈Ki

y i
k ≤ 1, i = 1, . . . ,m

y i
k ∈ {0,1}, i = 1, . . . ,m, k ∈Ki

m knapsack subproblems, one for each agent.
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Example with 5 jobs and 3 agents

y1
1 y1

2 y1
3 y1

4 y1
5 y1

6 y1
7 y2

1 y2
2 y2

3 y2
4 y3

1 y3
2 y3

3
job 1 1 1 1 1 =1

2 1 1 1 1 1 =1
3 1 1 1 1 1 =1
4 1 1 1 1 1 1 1 1=1
5 1 1 1 1 1=1

agent 1 1 1 1 1 1 1 1 ≤1
2 1 1 1 1 ≤1
3 1 1 1 ≤1

max 7 8 6 5 4 9 5 6 4 6 4 5 3 5

set partitioning problem: instead of ≤ constraints, use "idle agent"
columns (i.e., slack variables for agent constraints).
agent constraints are convexity constraints.
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Branching rule [Savelsbergh’97]

Ryan and Foster’s rule with one row belonging to a job and another row
belonging to an agent ⇒ branch on original variables xij .

Branching rule: create two branches
in left branch (xij = 1) : agent i does job j
in right branch (xij = 0) : assign job j to an agent i ′ other than i .

Branching constraints are not added explicitly to the Restricted Master
Problem, but actions are taken to guarantee that the solution of a given
node obeys the branching constraints imposed on the node.
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Branching rule [Savelsbergh’97] (cont.)

left branch (xij = 1) :

in master problem, set to 0:
all columns y i

k of agent i that do not make job j (with x i
jk = 0)

all columns y i ′
k of agents i ′ other than i that make job j (with x i ′

jk = 1)

in subproblem: always include job j in knapsack solution of agent i :

max z = (
∑
s∈S

πsys)+πj

subj .to
∑
s∈S

wsys ≤Wi −wj

ys ∈ {0,1}, ∀s ∈ S = {1, . . . ,n}\{j}

right branch (xij = 0) :

in master problem: set to 0 all columns y i
k of agent i that make job j

in subproblem: exclude job j from knapsack subproblem of agent i .
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Example: binary cutting stock problem (BCSP)

Binary cutting stock problem:
demand constraints are disaggregated, and items are treated
separately.
only practical when quantities demanded by each client are very
small, close to 1 unit.

min zIP = ∑
j∈J

xj

subj . to
∑
j∈J

aijxj = 1, i = 1,2, . . . ,m

xj ∈ {0,1}, ∀j ∈ J

Special case of GAP when all agents are identical.
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Example with 5 items

cutting patterns
W = 8 x1 x2 x3 x4 x5 x6

Demand bi

wi = 4 1 1 1 = 1
4 1 1 1 = 1
3 1 1 1 = 1
2 1 1 1 = 1
2 1 1 1 = 1

min 1 1 1 1 1 1

(some patterns may be missing...)

Set partitioning model:
there are no convexity constraints (bins are equal).
(convexity constraints would appear if bins were treated separately:
same set of feasible solutions for every bin).
no so structured as GAP.
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Branching rule [Vance et al. ’94]

Constraints are not added explicitly to the Master Problem.

in left branch: items r and s must belong to the same bin
in Master Problem: combine rows r and s in a single row, and set
to 0 all columns that are infeasible,
in (knapsack) Subproblem: replace items r and s by a single
item m+1 with πm+1 =πr +πs and wm+1 =wr +ws .

max zs =
∑
i∈S

πiyi

subj . to
∑
i∈S

wiyi ≤W

yi ∈ {0,1}, ∀i ∈ S = {1, . . . ,m}\{r ,s}∪ {m+1}

subproblem generates columns with either both items r and s or
none.
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Branching rule [Vance et al. ’94] (cont.)

in right branch: put items r and s in different bins
in Master Problem: set to 0 all columns that are infeasible,
in Subproblem: add extra constraint to avoid having both items r
and s

max zs =
∑
i∈S

πiyi

subj . to
∑
i∈S

wiyi ≤W

yr +ys ≤ 1
yi ∈ {0,1}, ∀i ∈ S

after b branchings, b pairs of constraints are added.

Structure of subproblem is preserved in GAP, but not in BCSP.
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Binary multicommodity flow problem

Flow of K commodities, indexed by k , in a graph G = (V ,A)
uij : capacity of arc (i , j)

Commodity k has a flow of qk , from one unique supply node and to one
unique demand node. Node i has:

a positive supply of bk
i units of commodity k , if i is one of the origin

nodes for k ,
a positive demand of −bk

i units of commodity k , if i is one of the
destination nodes for k ,
a null value, otherwise.

The flow of each commodity must be routed in a single path.
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Binary multicommodity flow problem: arc flow model

Decision variables xk
ij =

{
1, if entire flow of commodity k uses arc (i , j)
0, otherwise

ck
ij : unit cost of arc (i , j)
qkck

ij : cost of entire flow of commodity k in arc (i , j)

min
∑

k∈K

∑
(i ,j)∈A

qkck
ij x

k
ij

subj. to + ∑
(i ,j)∈A

xk
ij −

∑
(j ,i)∈A

xk
ji = bk

i , , ∀i ∈V ,∀k ∈K
∑

k∈K
qkxk

ij ≤ uij , ∀(i , j) ∈A

xk
ij ∈ {0,1}, ∀k ,∀(i , j) ∈A
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Binary multicommodity flow problem: path model

Pk : set of paths between source node and destination node of
commodity k .

Reform. variables yk
p =

{
1, if path p ∈Pk is used for commodity k
0, otherwise

ck
p : corresponding unit cost for the path, i.e., ck

p =∑
(i ,j)∈Aδ

p
ijc

k
ij .

where δp
ij =

{
1, if arc (i , j) belongs to path p
0, otherwise

min
∑

k∈K

∑
p∈Pk

qkck
p yk

p

subj. to
∑

k∈K

∑
p∈Pk

δ
p
ijq

kyk
p ≤ uij , ∀(i , j) ∈A

∑
p∈Pk

yk
p = 1, ∀k ∈K

yk
p ∈ {0,1}, ∀p ∈Pk ,∀k ∈K
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Example

42

1 6

53
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Branching on variables of reformulated model

Binary multicommodity flow problem: branching on paths

in left branch, yk
p = 1 is easy to deal with:

commodity k is done,
just reduce the capacities of arcs in path p by qk .

in right branch, yk
p = 0 forbids commodity k to use path p :

(shortest path) subproblem must know that it should not generate
path p for commodity k ,
which may be (and often is) the most attractive path to the
subproblem after the branching constraint is added to the master
problem ...
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Avoiding the regeneration of variables . . . to avoid a
deadlock

Modify subproblem, so as to:
reject the most attractive column (if you do not want it in the master
problem), the 2nd , the 3rd , . . . , the kth best columns, until an column
acceptable is found.

Application: binary multicommodity flow problem:

use kth best shortest path problem in subproblem.

Application: cutting stock problem:
Degraeve, Schrage’ 99 : (modified) knapsack subproblem receives a list
of forbidden solutions, and only generates acceptable solutions.
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Binary multicommodity problem: branching on x k
ij variables

xk
ij are variables of the original model

in right branch, xk
ij = 0 forbids commodity k to use arc (i , j) : just

remove arc (i , j) from (shortest path) subproblem graph.
in left branch, xk

ij = 1 forces commodity k to use arc (i , j) :

easy if there is a single constraint,
complicated if shortest path must go through a set of arcs, when
several constraints are enforced in the node, deep in the tree.
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Branching rule [Barnhart et al. ’00]

Binary multicommodity flow problem: exclude set of arcs of commodity
in one branch and the complementary set in the other branch

For a commodity k with fractional flows xk
ij out of a node i :

Choose a(n even) partition of the set J of successors of i : J and J\J ,

such that ∑
j∈J x

k
ij < 1,

and use branching constraints:∑
j∈J xk

ij ≤ 0∑
j∈J\J xk

ij ≤ 0

Constraints are easy to enforce in the subproblem in both branches,
because arcs are just removed from subproblem.
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Example

left branch: xk
12 +xk

13 = 0 – arcs (1,2) and (1,3) excluded
right branch: xk

14 +xk
15 = 0 – arcs (1,4) and (1,5) excluded

2

3
0,5

1
3

1,0

1
44

0,5

5

left and right branches are not mutually disjoint:
Solutions with null flow in all arcs (1,2),(1,3),(1,4) and (1,5) belong to
both branches.
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Vehicle routing with TW [Desrochers et al. ’92]
All clients are visited once:
in left branch: cover clients i and j with the same route

in Subproblem network:
fix arc (i , j) at 1.
arcs (i ,k),k 6= j are removed
arcs (l , j), l 6= i are removed

in Master Problem: penalize all columns of master problem that use
arcs removed in subproblem (penalty should be sufficient to drive
then to 0)

i j
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Vehicle routing with TW [Desrochers et al. ’92] (cont.)

in right branch: cover clients i and j with different routes
in Subproblem network:

arc (i , j) is removed

in Master Problem: again penalize all columns of master problem
that use arcs removed in subproblem

i j
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Carpaneto and Toth’s rule (1980)

Pick a fractional variable yr of the master problem corresponding to
a route with s arcs: v1,v2, . . . ,vs ,v1.

Create s +1 branches on arc variables of the route:

branch 1 : xv1v2 = 0
branch 2 : xv1v2 = 1, xv2v3 = 0

. . .
branch s : xv1v2 = 1, xv2v3 = 1, xvs−1vs = 1, . . . , xvs v1 = 0
branch s +1 : xv1v2 = 1, xv2v3 = 1, xvs−1vs = 1, . . . , xvs v1 = 1

creates a polynomial number of branches
used in J. Desrosiers, F. Soumis, M. Desrochers, Routing with Time
Windows by Column Generation, Networks, 14, pp. 545–565, 1984.
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Example: route with 3 arcs

Consider route: v1 → v2 → v3 → v1.

branch 1 : xv1v2 = 0
branch 2 : xv1v2 = 1, xv2v3 = 0
branch 3 : xv1v2 = 1, xv2v3 = 1, xv3v1 = 0
branch 4 : xv1v2 = 1, xv2v3 = 1, xv3v1 = 1

xv1v2 xv2v3 xv3v1
0 0 0

branch 1 0 0 1
0 1 0
0 1 1

branch 2 1 0 0
1 0 1

branch 3 1 1 0
branch 4 1 1 1
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Dealing with branching constraints

branch 1 : xv1v2 = 0 :

remove arc xv1v2 from subproblem

branch 2 : xv1v2 = 1, xv2v3 = 0 :

group trips 1 and 2 both in the master problem and in subproblem
remove arc xv2v3 from subproblem

branch 3 : xv1v2 = 1, xv2v3 = 1, xv3v1 = 0 :

group trips 1, 2 and 3 both in the master problem and in subproblem
remove arc xv3v1 from subproblem

branch 4 : xv1v2 = 1, xv2v3 = 1, xv3v1 = 1 :

route is fixed: remove trips 1, 2 and 3
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Considering branching constraints explicitly

In all the previous examples, the branching constraints were not added to
the Restricted Master Problem.

General strategy [Vanderbeck, Wolsey’96]:
Consider the structure of the RMP at a given node of the
Branch-and-Price tree,
Use dual information from the branching constraints in the
subproblem.
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Considering branching constraints explicitly (cont.)

Restricted master problem at a given node of the branch-and-price tree:

minz = ∑
j∈J

cjxj

s. to
∑
j∈J

ajxj = b∑
j∈J

xj ≤U∑
j∈J

xj ≥ L

xj ≥ 0, and integer, ∀j ∈ J ,

π ∈ IRm,µ ∈ IR−,ν ∈ IR+ are the dual variables corresponding to each set of
constraints, respectively.
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Considering branching constraints explicitly (cont.)

Subproblem:
there are new constraints in the Restricted Master Problem,
it may be necessary to consider additional binary variables in the
subproblem to enforce in the subproblem the dual information of the
Restricted Master Problem,

Compatibility:
if that happens, subproblem loses its structure,
it may become a general Integer Programming Problem.
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Concluding remarks

compatibility is a crucial issue in branch-and-price
in models with binary variables, it is often possible to implement
branch-and-price without adding explicitly the constraints.
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Part IV

Branch-and-price algorithms (cont.)
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Outline

Branch-and-price: general integer variables
Arc-flow model
Application example: cutting stock problem
Extension to the Multiple lengths cutting stock problem
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Cutting Stock Problem: arc flow model [VC, 1999]

Rolls of integer capacity W and items of integer size
w1, . . . ,wd , . . . ,wm.

Oriented acyclic graph G = (V ,A).
V = {0,1,2, . . . ,W }.
A= {(i , j) : 0≤ i < j ≤W and j − i =wd , d = 1, . . . ,m} : length of
oriented arc defines size of item.
Additional arcs (k ,k +1),k = 0,1, . . . ,W −1, correspond to loss.
Valid cutting pattern is a path between vertices 0 and W.
The number of variables is O(mW ).
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Cutting Stock Problem: arc flow model [VC, 1999]

Rolls of integer capacity W and items of integer size
w1, . . . ,wd , . . . ,wm.

Oriented acyclic graph G = (V ,A).

V = {0,1,2, . . . ,W }.
A= {(i , j) : 0≤ i < j ≤W and j − i =wd , d = 1, . . . ,m} : length of
oriented arc defines size of item.
Additional arcs (k ,k +1),k = 0,1, . . . ,W −1, correspond to loss.
Valid cutting pattern is a path between vertices 0 and W.
The number of variables is O(mW ).
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Cutting Stock Problem: arc flow model [VC, 1999]

Rolls of integer capacity W and items of integer size
w1, . . . ,wd , . . . ,wm.

Oriented acyclic graph G = (V ,A).
V = {0,1,2, . . . ,W }.

A= {(i , j) : 0≤ i < j ≤W and j − i =wd , d = 1, . . . ,m} : length of
oriented arc defines size of item.
Additional arcs (k ,k +1),k = 0,1, . . . ,W −1, correspond to loss.
Valid cutting pattern is a path between vertices 0 and W.
The number of variables is O(mW ).
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Cutting Stock Problem: arc flow model [VC, 1999]

Rolls of integer capacity W and items of integer size
w1, . . . ,wd , . . . ,wm.

Oriented acyclic graph G = (V ,A).
V = {0,1,2, . . . ,W }.
A= {(i , j) : 0≤ i < j ≤W and j − i =wd , d = 1, . . . ,m} : length of
oriented arc defines size of item.

Additional arcs (k ,k +1),k = 0,1, . . . ,W −1, correspond to loss.
Valid cutting pattern is a path between vertices 0 and W.
The number of variables is O(mW ).
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Cutting Stock Problem: arc flow model [VC, 1999]

Rolls of integer capacity W and items of integer size
w1, . . . ,wd , . . . ,wm.

Oriented acyclic graph G = (V ,A).
V = {0,1,2, . . . ,W }.
A= {(i , j) : 0≤ i < j ≤W and j − i =wd , d = 1, . . . ,m} : length of
oriented arc defines size of item.
Additional arcs (k ,k +1),k = 0,1, . . . ,W −1, correspond to loss.

Valid cutting pattern is a path between vertices 0 and W.
The number of variables is O(mW ).
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Cutting Stock Problem: arc flow model [VC, 1999]

Rolls of integer capacity W and items of integer size
w1, . . . ,wd , . . . ,wm.

Oriented acyclic graph G = (V ,A).
V = {0,1,2, . . . ,W }.
A= {(i , j) : 0≤ i < j ≤W and j − i =wd , d = 1, . . . ,m} : length of
oriented arc defines size of item.
Additional arcs (k ,k +1),k = 0,1, . . . ,W −1, correspond to loss.
Valid cutting pattern is a path between vertices 0 and W.

The number of variables is O(mW ).
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Cutting Stock Problem: arc flow model [VC, 1999]

Rolls of integer capacity W and items of integer size
w1, . . . ,wd , . . . ,wm.

Oriented acyclic graph G = (V ,A).
V = {0,1,2, . . . ,W }.
A= {(i , j) : 0≤ i < j ≤W and j − i =wd , d = 1, . . . ,m} : length of
oriented arc defines size of item.
Additional arcs (k ,k +1),k = 0,1, . . . ,W −1, correspond to loss.
Valid cutting pattern is a path between vertices 0 and W.
The number of variables is O(mW ).
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Example: rolls of width W = 5, items of sizes 3 and 2

r r r r r r- - - - -

w2 w2 w2 w2
- - - -

- - -
w1 w1 w1

loss loss loss loss loss
0 1 2 3 4 5

r r r r r r-
w2 w2
- -

loss
0 1 2 3 4 5

Path corresponds to 2 items of size 2 and 1 unit of loss.
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Arc flow model: main ideas

Flow of one unit from vertex 0 to vertex W corresponds to one
cutting pattern.
Larger flow corresponds to the same cutting pattern in several rolls.
Flow Decomposition property (graph G is acyclic): any flow can be
decomposed in oriented paths connecting the only supply node
(node 0) to the only terminal node (node W).
Solution with integer flows is decomposed into an integer solution
for the Cutting Stock Problem.
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Ahuja, Magnanti, Orlin’93:

Every nonnegative arc flow can be represented as a path and cycle flow
(though not necessarily uniquely) with the following two properties:
i) every oriented path with positive flow connects a deficit node to an
excess node.
ii) At most n+m paths and cycles have nonzero flow; out of these, at
most m cycles have nonzero flow.
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Arc flow model

Decision variables xij : flow in arc (i , j)≡ number of items of size j − i
placed in any roll at a distance i of the border of the roll.

min z

subj. to + ∑
(i ,j)∈A

xij −
∑

(j ,k)∈A
xjk =


−z , if j = 0
0 , if j = 1, . . . ,W −1
z , if j =W∑

(k ,k+wd )∈A
xk ,k+wd ≥ bd , d = 1,2, . . . ,m

xij ≥ 0 and integer , ∀(i , j) ∈A

Constraint set 1: flow conservation ≡ valid cutting patterns.
Constraint set 2: sum of flows in arcs of each size ≥ demand.
Objective: minimize z ≡ flow between vertex 0 and vertex W.
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Arc flow model: example

q q q q q q q q q0 1 2 3 4 5 6 7- - - - -
- - - -

8-
--

- -

---

�

x04 x48 x03 x36 x47 x02 x24 x35 x46 x57 x68 z
node 0 -1 -1 -1 1 = 0

1 = 0
2 1 -1 = 0
3 1 -1 -1 = 0
4 1 -1 -1 1 -1 = 0
5 1 -1 = 0
6 1 1 -1 = 0
7 1 1 = 0
8 1 1 -1 = 0

wd = 4 1 1 ≥ 5
3 1 1 1 ≥ 4
2 1 1 1 1 1 1 ≥ 8

The loss arcs in the Figure are omitted in the LP model.
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Equivalence with Gilmore-Gomory model

Proposition

Arc flow model is equivalent to classical Gilmore-Gomory model.

Proof: applying a DW decomposition to arc flow model gives
Gilmore-Gomory model.

Keep demand constraints in the master problem and flow constraints
in the subproblem.
Each path (cutting pattern) corresponds to an integer solution of
the knapsack subproblem.
Each path is part of a circulation flow (includes the z variable),
which is an extreme ray of the subproblem.
Null solution is the only extreme point.
Otherwise, there are extreme rays: no convexity constraint.
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Symmetry

A model has symmetry when different solutions, in terms of the values of
the decision variables, correspond to the same physical solution in the
real system.
Example Kantorovich model: decision variable xij = 1, if item j is
placed in roll i .
Two solutions: items 1 and 2 are placed in a bin, and the items 3 and 4
in the other:
solution 1: x11 = x12 = x23 = x24 = 1;
solution 2: x21 = x22 = x13 = x14 = 1.
correspond to the same packing.
Example Arc-flow model:
solution 1: x03 = x35 = x57 = x78 = 1;
solution 2: x02 = x24 = x47 = x78 = 1.
correspond to the same cutting pattern.
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Reduction of symmetry

Criterion
An arc of size we , denoted as xk ,k+we , can only have its tail at a node k
that is the head of another arc of size wd , xk−wd ,k , for wd ≥we , or, else,
at node 0, i.e., the left border of the roll.

If a cutting pattern has loss, it will appear at the end of the roll:

Criterion
Arcs of loss xk ,k+1 may be set to zero, for k <wm.

In a cutting pattern, the number of consecutive arcs of a given size should
be less than or equal to the number of demanded items of that size.

Criterion

Given a node k that is the head of another arc of size wd (wd >we)
or k = 0, the only valid arcs of size we are those that start at
nodes k + swe ,s = 0,1,2, . . . ,be −1 and k + swe ≤W , being be the demand
of items of size we .

Symmetry does not arise in the following solution methodology.
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Branch-and-price methodology for CSP

Master Problem: Gilmore-Gomory model + branching constraints based
on arc flow variables.

Finding a fractional arc flow variable for branching:

Find arc flows xpq reading Gilmore-Gomory variables:
Assumption: items in cutting pattern placed by decreasing size.
Cutting pattern contributes xj to flow of original variable xpq if there
is an item of size q−p beginning at p,

i.e., value of the flow xpq is given by:

xpq = ∑
j∈J

xj
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Example: first branching constraint

Fractional optimal solution of the linear relaxation:

4

4

3
3
22

2
2
2

Aj A1 A3 A4

xj = 2.5 1.5 2.0

Flows in arcs: x04 = 2.5, x48 = 2.5, x03 = 2.0, x36 = 2.0, x02 = 1.5,
x24 = 1.5, x46 = 1.5, and x68 = 3.5.

First branching constraint: x04 ≥ 3.
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Branching scheme

Branching rule (simple): create 2 branches:

xij ≤ bxijc
and

xij ≥ dxije

Variable selection: fractional largest item size, closer to the top
border of the roll.
Search: depth-first search (≥ branch explored first).
Branching constraint respects to a single arc in position (i , j).

Branching constraint only affects the cutting patterns with an arc in
position (i , j).
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Restricted master problem in node w of the search tree

min ∑
j∈J xj

s . to ∑
j∈J adjxj ≥ bd , d = 1,2, . . . ,m ← GG model

∑
j∈J δ

l
jxj ≤ bx l

ijc , ∀l ∈Gw

∑
j∈J δ

l
jxj ≥ dx l

ije , ∀l ∈Hw ← branching constraints

xj ≥ 0, ∀j ∈ J ,

Gw ,Hw : sets of branching constraints of the types ≤ and ≥, respectively.
x l

ij : the fractional values of flow 0< x l
ij < bd .

δl
j = 1, if the arc (i , i +wd ) ∈ cutting pattern j ; or 0, otherwise.

Note: CSP has general integer variables
Most applications have binary variables.
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Dual information for the subproblem

Prize / penalty from a branching constraints of type ≥ and ≤,
respectively, only change reduced cost of one arc in the subproblem.
In node w , the reduced cost of arc (i , j) is

c ij =πd − ∑
l∈Gw

(i ,j)

µl +
∑

l∈Hw
(i ,j)

νl ,

Gw
(i ,j) ⊆Gw , Hw

(i ,j) ⊆Hw : sets of branching constraints on arc (i , j).

Structure of subproblem remains unchanged during branch-&-price.
Subproblem is solved using dynamic programming
(pseudopolynomial).
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Restricted problem: first node of branch-and-price tree

Insert branching constraint x04 ≥ 3, and reoptimize:

x1 x2 x3 x4 dual
wd = 4 2 ≥ 5 0.0

3 2 2 ≥ 4 0.375
2 4 1 ≥ 8 0.25

x04 ≥ 3 1 ≥ 3 1.0
min 1 1 1 1

primal 3.0 0.0 1.5 2.0 z1 = 6.5

Dual info: prize of 1 associated to branching constraint x04 ≥ 3..
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Subproblem: first node of branch-and-price tree

States

0
1
2
3
4
5
6
7
8

Stages
0 1 2 3 4

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

0
1

1

0
0.375

0.75

0
0.375

0

0
0.25
0.5
0.751

0
0.250.50
0.250.5

0
0.25
0

0

0

0

0
0
0

0

0
0

In stage 0, placing 1 or 2 items has a contribution equal to 1.
First decision: arc (0,4); second decision: arcs (0,4) and (4,8).
Optimal solution: 1 item of size 4 and 2 items of size 2 (value=1.5).
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Optimal integer solution

The new column has a 1 in the branching constraint (sum of flows in
arc (0,4) across all cutting patterns must be ≥ 3).
After reoptimizing:

x1 x2 x3 x4 x5 dual
wd = 4 2 1 ≥ 5 0.5

3 2 2 ≥ 4 0.375
2 4 1 2 ≥ 8 0.25

x04 ≥ 3 1 1 ≥ 3 0.0
min 1 1 1 1 1

primal 2.0 0.0 1.0 2.0 1.0 z∗ = 6.0

The solution is integer, with a value equal to the LP relaxation.
Optimal solution!
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Multiple lengths cutting stock problem (MLCSP)

Multiple stock lengths available, instead of a single roll size.
Proposed by Gilmore-Gomory’63 (machine balance problem).
Many heuristic approaches: Chu,La’2001, Holthaus’2002
Few exact solution approaches: Monaci’2002, Belov,Scheithauer’2002

Equivalent counterpart in bin-packing literature is the Variable sized
bin-packing problem (VSBPP).
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Multiple lengths cutting stock problem: model

aikr : number of items of width wi obtained in stock length k using
pattern r .
λkp : number of times a pattern p from stock length k is cut.
Pk : set of feasible cutting patterns of stock length k, k = 1, . . . ,K .

min
K∑

k=1

∑
p∈Pk

Wkλkp

subj. to
K∑

k=1

∑
p∈Pk

aikpλkp ≥ bi , i = 1, . . . ,m,

∑
p∈Pk

λkp ≤Bk , k = 1, . . . ,K ,

λkp ≥ 0 and integer, k = 1, . . . ,K , p ∈Pk .

constraint set 1: demand constraints.
constraint set 2: availability constraints on each stock length.
(Gilmore-Gomory’63)
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Multiple lengths cutting stock problem: example

Stock : availabilities B = (B1,B2,B3), sizes W = (9,6,5).
Demand: quantities b = (20,10,20), sizes w = (4,3,2).
Sum of item sizes: ∑

i wibi = 80+30+40= 150.
Available capacity of stock lengths: ∑

k WkBk = 9B1 +6B2 +5B3.

λ11 λ12 λ13 λ14 λ15 λ16 λ17 λ21 λ22 λ23 λ24 λ31 λ32 λ33
wi = 4 2 1 1 1 1 ≥ 20

3 1 3 2 1 2 1 1 ≥ 10
2 1 2 1 3 4 1 1 3 1 2≥ 20

Wk = 9 1 1 1 1 1 1 1 ≤B1
6 1 1 1 1 ≤B2
5 1 1 1≤B3

min 9 9 9 9 9 9 9 6 6 6 6 5 5 5
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Arc-flow model (multiple lengths cutting stock problem)

min
K∑

k=1
Wkzk

subj . to

− ∑
(d ,e)∈A′

xde +
∑

(e,f )∈A′
xef =


∑K

k=1 zk , if e = 0
−zk , for e =Wk ,k = 1, . . . ,K
0 , otherwise∑

(d ,d+wi )∈A′
xd ,d+wi ≥ bi , ∀i ∈ I

zk ≤Bk , k = 1, . . . ,K
xde ≥ 0 and integer , ∀(d ,e) ∈A′

zk ≥ 0 and integer , k = 1, . . . ,K
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Example (multiple lengths cutting stock problem)

Stock : availabilities B = (B1,B2,B3), sizes W = (9,6,5).
Demand: quantities b = (20,10,20), sizes w = (4,3,2).
Sum of item sizes: ∑

i wibi = 80+30+40= 150.
Available capacity of stock lengths: ∑

k WkBk = 9B1 +6B2 +5B3.

q q q q q q q q q q0 1 2 3 4 5 6 7- - - - -
- - - -

�

8 9- -
- --

�

�

- -

----
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LP model (multiple lengths cutting stock problem)

z1z2z3x04x48x03x36x47x69x02x24x35x46x57x68x79x23x34x45x56x67x78x89
node 0 1 1 1 -1 -1 -1 = 0

1 = 0
2 1 -1 -1 = 0
3 1 -1 -1 1 -1 = 0
4 1 -1 -1 1 -1 1 -1 = 0
5 -1 1 -1 1 -1 = 0
6 -1 1 -1 1 -1 1 -1 = 0
7 1 1 -1 1 -1 = 0
8 1 1 1 -1= 0
9 -1 1 1 1= 0

wi = 4 1 1 ≥ 20
3 1 1 1 1 ≥ 10
2 1 1 1 1 1 1 1 ≥ 20

Wk = 9 1 ≤B1
6 1 ≤B2
5 1 ≤B3

min 9 6 5
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Lower bounds zw
IP for MLCSP at node w of branching tree

zw
LP : LP bound at node w of branch-and-price tree.
Any MLCSP solution uses a combination of stock rolls with integer
lengths.
Stronger integer lower bound zw

IP for node w : smallest integer
combination (≥ zw

LP) of modified list of stock lengths available.
Modified list of stock lengths available (branching constraints on z arcs):
i) zk ≥ lwk : remove lwk rolls of width Wk from list, and consider them
separately.
ii) zk ≤ uw

k : use list of uw
k rolls instead of Bk , otherwise uw

k =Bk .

zw
IP = min

K∑
k=1

Wkyk +
K∑

k=1
Wk lwk

subj. to
K∑

k=1
Wkyk ≥ ⌈

zw
LP

⌉− K∑
k=1

Wk lwk ,

yk ≤ uw
k − lwk , k = 1, . . . ,K ,

yk ≥ 0 andinteger, k = 1, . . . ,K .
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Level Cuts for MLCSP

Use zw
IP to enforce "Level Cuts" in one of the following ways:

1. trim loss has to appear somewhere in the cutting plan:

K∑
k=1

∑
p∈Pk

(
Wk −

m∑
i=1

wiaikp

)
λkp ≥ zw

IP −
m∑

i=1
wibi .

2. use, at least, zw
IP length of rolls:

K∑
k=1

∑
p∈Pk

Wkλkp ≥ zw
IP .

Dual information easily transferable to subproblem.
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Feasibility cuts for MLCSP [Vanderbeck’99]

m cuts are derived, one for each item size.
Only feasibility cuts that depend on a single item size: dual info variables
easily reported to the pricing subproblems.
If the availability of the largest roll k = 1 is enough to cut all the items of
size wi , for i = 1, . . . ,m, we will have

K∑
k=1

∑
p∈Pk :aikp>0

λkp ≥
ÈÌÌÌ bi⌊

W1
wi

⌋
ÉÍÍÍ .

Otherwise, if
⌈

bi⌊ W1
wi

⌋
⌉
>B1, and the availability of stock rolls with length

W2 is enough to cut the remaining items,

K∑
k=1

∑
p∈Pk :aikp>0

λkp ≥B1 +
ÈÌÌÌ
bi −B1

⌊
W1
wi

⌋
⌊

W2
wi

⌋
ÉÍÍÍ ,

and so forth.
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Implementation issues (MLCSP)

Branching scheme
Branch first on larger fractional z arcs.
Use branching information to improve lower bounds (Level cuts).
Then, branch on xde arcs.

Subproblem
Single dynamic programming recursion solves subproblems for all
lengths.
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Cutting Stock Problem: some computational results

CSP: problems with 1 large roll width and m=200 item different sizes
solved in reasonable time (triplet instances) [VC, 1999].

Multiple lengths CSP: problems with K different large roll widths
(instances from literature) [Cláudio Alves, VC, 2008].

K m av. time
5 100 ≈ 1 sec.
15 25 ≈ 1 sec.

Hard instances → 5 100 ≈ 30 sec.
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MLCSP - Computational results: summary

Branch-and-price-and-cut with simple rounding heuristic compares
favorably to other approaches (results with dual cuts shown in Part V):

K m av. time
largest group inst. (Monaci) 5 100 ≈ 4 sec.
our instances 15 25 ≈ 1 sec.
hard instances (Belov) → 5 100 ≈ 30 sec. (for 45 instances solved;

5 unsolved in time limit: 900 sec.
optimality gap ≤ 0.0025% )

K : different large roll widths (Alves’PhD2005, Alves,VC’2006).

300 instances (Monaci’2002 - Combinatorial enumeration)
Monaci solved 78% of the instances (time limit: 900 seconds).
50 hard instances (Belov’2002 - Column generation with
Chvátal-Gomory cutting planes and elaborate heuristic)
Belov’s approach solves less instances and takes more time (85 sec. vs.
30 sec.)
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Concluding remarks

Some heuristics provide good results for CSP; often optimal
solutions.
Heuristics do not solve optimally the MLCSP so easily.
(GG + arc-flow) methodology is better than arc-flow solely, even
with dynamic constraint generation (less symmetry and smaller size
of the LP basis).
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Part V

Stabilization
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Outline

Primal and dual perspectives
Stabilizing terms: examples
Degeneracy and perturbation
Perfect Dual Information
(Weak and deep) dual-optimal inequalities
Application: cutting stock problem
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Acceleration of column generation

-

6

optimum
(unknown value)

minz

iteration

p p p p p p p p p p p p p p p p p p p
p p p p
p p p p p p p p p p p p p p p

?

6

current solution

lower bound

Slow convergence: large changes in the values of the dual variables,
which oscillate from one iteration to the next.
Degeneracy: in many iterations, adding new columns to restricted master
problem does not improve objective value.
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Instability of the values of the dual variables

Dual objective: maximize dual function πb, with gradient b.

Domain is successively restricted by adding dual constraints.
π2 gets smaller at each iteration (πb also does).
π1 oscillates until optimum dual solution is reached.
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Instability of the values of the dual variables
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Instability of the values of the dual variables

Dual objective: maximize dual function πb, with gradient b.

Domain is successively restricted by adding dual constraints.
π2 gets smaller at each iteration (πb also does).
π1 oscillates until optimum dual solution is reached.
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Instability of the values of the dual variables

Dual objective: maximize dual function πb, with gradient b.

Domain is successively restricted by adding dual constraints.
π2 gets smaller at each iteration (πb also does).
π1 oscillates until optimum dual solution is reached.
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Instability of the values of the dual variables

Dual objective: maximize dual function πb, with gradient b.

Domain is successively restricted by adding dual constraints.
π2 gets smaller at each iteration (πb also does).
π1 oscillates until optimum dual solution is reached.
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Acceleration of column generation: motivation

Restricting the dual space may accelerate column generation.
Better convergence: smaller number of attractive columns in subproblem.
Less degeneracy: alternative dual solutions ≡ degenerate primal solutions.

How to do it [VC, 2005]:
Add valid dual cuts to the model before starting column generation.
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Simple example

Restricting the dual space by setting lower bounds on dual variables:
GilmoreGomory’61: for any optimal primal solution with slack for the
CSP, there is an alternative optimal primal solution without slack.
What to do do: allow solutions with slack, substituting primal = for ≥
constraints.
Faster convergence: at a given restricted master problem, there may be a
solution with slack better than all solutions without slack.
Dual perspective: dual variables are restricted to be ≥ 0, instead of
unrestricted.

Same happens in many practical applications, when it is valid to work
with set covering instead of set partitioning formulations.
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Column generation: dual perspective

Cutting plane algorithm: adding a column in the primal is equivalent to
adding a cut in the dual.

(Primal )
min cx
s .t . Ax ≥ b

x ≥ 0
(Dual) max πb

s .t . πA≤ c

CSP Example: rolls of width 10, items of size 4 and 3

(Primal )

min 1x1 +1x2 +1x3
s .t . 2x1 +1x2 ≥ b1

+2x2 +3x3 ≥ b2
x1,x2,x3 ≥ 0

(Dual)

max b1π1 +b2π2
s .t . 2π1 ≤ 1

1π1 +2π2 ≤ 1
3π2 ≤ 1

π1,π2 ≥ 0

© J.M. Valério de Carvalho, UMinho Decomposition Methods for Integer Programming 206



Dual space of CSP: rolls of size 10, items of size 4 and 3
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knapsack:
K = {(y1,y2) : 4y1 +3y2 ≤ 10,y1,y2 ≥ 0 and integer} = {(2,0),(1,2),(0,3)}
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Cutting plane algorithm for dual of CSP: starting solution
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Dual space of CSP: first iteration
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Dual space of CSP: second iteration
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Dual cuts

Ax = b is column generation model.

(P )
min cx
s .t . Ax = b

x ≥ 0
(D) max πb

s .t . πA≤ c

Adding a set of inequalities to the dual problem, πD ≤ d , we get the
extended primal-dual pair:

(Pe )
min cx +dy
s .t . Ax +Dy = b

x ,y ≥ 0
(De)

max πb
s .t . πA≤ c

πD ≤ d

Usually, restricting the dual ≡ relaxing the primal.
In this case, that does not happen.
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Methodology

Assumption

Assume that we can map any solution (x ,y) of the extended model to a
solution x that is valid in the original space, i.e.,
x ∈X = {x :Ax = b,x ≥ 0}, and has the same objective value, i.e.,
cx = cx +dy .

Solve the extended model, and eventually recover an optimal solution to
the original problem.

Proposition

Under Assumption 1, mapping the optimal solution of the extended
model (x∗,y∗) gives a solution x∗ that is optimal to the original problem.

Proof: Let z∗P and z∗Pe be the optimal values of problems P and Pe ,
respectively. Clearly, z∗Pe ≤ z∗P . Let (x∗,y∗) be the optimal solution of
problem Pe . Then, x∗ ∈X and cx∗ = cx∗+dy∗ = z∗Pe ≤ z∗P , which means
that x∗ is optimal to the original problem. It follows that z∗Pe = z∗P . �
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Insight

Dual inequalities may effectively cut portions of the space of the dual
problem D (πA≤ c), but

Corollary

Under Assumption 1, the dual inequalities do not cut all optimal dual
solutions of the original problem.

Proof: Let z∗D and z∗De be the optimal values of problems D and De ,
respectively. Suppose that all optimal dual solutions were cut. Then,
z∗De < z∗D , and, by the strong duality theorem, z∗Pe < z∗P , contradicting the
previous Proposition. �

That also happens, if, at the optimum of the extended model, the dual
inequality is obeyed with slack, that is, πD < d .
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A family of valid dual cuts

Proposition
For any width wi , and a set S of item widths, indexed by s , such that∑

s∈S ws ≤wi , the dual cuts

−πi +
∑
s∈S

πs ≤ 0, ∀i ,S ,

are valid inequalities to the space of optimal solutions of the dual of the
cutting stock problem.

Proof.
(contradiction): there would be an attractive cutting pattern.

Primal point of view: an item of size wi can be cut, and used to fulfill
the demand of smaller orders, provided the sum of their widths is ≤wi .
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Example

Combining a cutting pattern and a valid dual cut gives a new cutting
pattern.

W = 100 A1 D1 A1 Anew
1 Qty produced

25 2 + 0 −−> 2 + 2 0.6
10 4 -1 4 0 0.4
6 1 1 1 5 1.1
3 0 1 0 4 0.8
2 2 0 2 2 0.6

xj 0.3 0.8 0.1 0.2
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Implementation issues

Exponential number of cuts of this family.
Use only cuts from sets S of small cardinality.
Sets of size 1 and 2 provide a polynomial number O(m2) of cuts.

Cuts selected:
Cuts of Type 1: −πi +πi+1 ≤ 0, i = 1,2, . . . ,m−1
Cuts of Type 2: −πi +πj +πk ≤ 0, ∀i , j ,k :wi ≥wj +wk
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Dual space of CSP: rolls of size 10, items of size 4 and 3
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K = {(y1,y2) : 4y1 +3y2 ≤ 10,y1,y2 ≥ 0 and integer} = {(2,0),(1,2),(0,3)}
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Dual space of CSP with cut π1 ≥π2
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Dual cuts are valid inequalities for the optimal dual space: π1 ≥π2 cuts
the dual space but obeys all the dual optimal solutions.
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Methodology

Computational implementation of column generation:
Add dual cuts to model before starting column generation.
Add starting solution: as suggested by GG, or any other.
Proceed as usual.

dual cuts GG initial solution
100 d1 d2 d3 d4 d5 d6 d7 x1 x2 x3 x4 x5
25 -1 -1 4 ≥ d25
10 1 -1 1 -1 10 ≥ d10
6 1 -1 1 1 -1 16 ≥ d6
3 1 -1 1 1 33 ≥ d3
2 1 1 50 ≥ d2

min 0 0 0 0 0 0 0 1 1 1 1 1

Note: every column is a dual constraint.

© J.M. Valério de Carvalho, UMinho Decomposition Methods for Integer Programming 219



Computational experiments: instances

Binpacking instances (OR-Library, Beasley’90)
t class: instances with an integer optimum solution in which all bins have
three items, which fulfill exactly the capacity of the bin (triplet instances).
Bin capacity is W = 100, and item sizes vary between 25.0 and 49.9.
No dual cuts of Type II, because no item can be divided into two smaller
items.
Larger instances were tested: the t501–instances, with 501 items.

Cutting stock instances (as in Vance’93)
Rolls with widths of 100, 120 or 150, a number of items equal to 200 or
500, with randomly generated real values drawn from a uniform
distribution u(1,100).
Existence of small items leads to an explosion in the number of feasible
columns.
The more difficult instances are those with larger roll widths and larger
number of items, because they have more feasible columns.
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Computational results: summary

Binpacking instances (OR-Library, Beasley’90)
Reduction in number of columns: 43.0 % (from 263.3 to 150.0).
Reduction in computational time: 20.1 % faster.
Reduction in degenerate pivots: percentage falls from 9.3% to 5.4%.

Cutting stock instances (as in Vance’93)
Reduction in number of columns: 75.9 % (from 5309.1 to 1281.6).
Reduction in computational time: 78.2 % (4.5 times faster).
Reduction in degenerate pivots: percentage falls from 39.8% to 8.5%.
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Dual cuts in the arc-flow model

Dual cuts are cycles in the space of the original variables.

r r r r r r- - - - -

w2 w2 w2 w2- - - -

- - -
w1 w1 w1

loss loss loss loss loss
0 1 2 3 4 5

Exactly one arc (the largest) is traversed in the direction opposite to its
orientation.
Combining a cycle and a path produces a new path.
For each arc with negative flow (direction opposite to its orientation),
there is always one (or plus) arc(s) with positive flow(s) with larger value:
the net sum of flows in arcs that correspond to a given width is positive
(equal to the demand).
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Boxstep method (Marsten et al. 1975)

Motivation: avoid oscillation of the dual variables by drawing a fixed-size
Box (lower and upper bounds) for each dual variable.
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Solution process:
If the optimal dual solution is strictly inside the box, then it is an
optimal solution to the original problem.
If any dual variable lies in the boundary of the box (its value equals
the lower or the upper bound), the box is re-centered for the next
iteration.
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Boxstep method (Marsten et al. 1975)
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Boxstep method (Marsten et al. 1975)

Motivation: avoid oscillation of the dual variables by drawing a fixed-size
Box (lower and upper bounds) for each dual variable.

�
�
�
�
�
��

b

π0
s

HHH
HHH

�
�
�
�
�
�
�
�
�

��
���

���
��
��

�
�
�
�
�
�
�
�
�

HH
H

HH
H

HH
HH

π1
s��

���
���

���
�

π2
s HHH

HHH

sπ∗

Solution process:
If the optimal dual solution is strictly inside the box, then it is an
optimal solution to the original problem.
If any dual variable lies in the boundary of the box (its value equals
the lower or the upper bound), the box is re-centered for the next
iteration.

© J.M. Valério de Carvalho, UMinho Decomposition Methods for Integer Programming 230



Boxstep method (Marsten et al. 1975)

Motivation: avoid oscillation of the dual variables by drawing a fixed-size
Box (lower and upper bounds) for each dual variable.
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Primal and dual problems (Marsten et al. 1975)

Ax = b is original column generation model:

(P )
min cx
s .t . Ax = b

x ≥ 0
(D) max πb

s .t . πA≤ c

Modified column generation model:

(Pb )

min cx −δ−u−+δ+u+
s .t . Ax −u−+u+ = b

x ,u−,u+ ≥ 0 (Db)

max πb
s .t . πA≤ c

−π≤−δ−
π≤ δ+

Bounds in dual variables define a Box: δ− ≤ π ≤ δ+.
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Analysis of Boxstep method (Marsten et al. 1975)

Computational implementation of column generation:
similar to standard, but the restricted master problems has slack and
surplus variables with a cost (penalty).

(Pb )

min cx −δ−u−+δ+u+
s .t . Ax −u−+u+ = b

x ,u−,u+ ≥ 0 (Db)

max πb
s .t . πA≤ c

−π≤−δ−
π≤ δ+

Primal view: penalize deviation from valid solution.
Dual view: Set Box (Trust region) for dual variables.

small Box may lead to many iterations.
standard column generation is Boxstep method with infinite
dimension box.
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Stabilizing terms: penalty / trust region
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larger penalty in primal, wider box in dual

smaller penalty in primal, thinner box in dual
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Stabilization (du Merle et al. 99)

Ax = b is original column generation model:

(P )
min cx
s .t . Ax = b

x ≥ 0
(D) max πb

s .t . πA≤ c

Stabilized column generation model:

(Ps )

min cx −δ−u−+δ+u+
s .t . Ax −u−+u+ = b

u− ≤ ε−
u+ ≤ ε+
x ,u−,u+ ≥ 0

(Ds)

max πb−ε−w−−ε+w+
s .t . πA≤ c

−π−w− ≤−δ−
π−w+ ≤ δ+
w−,w+ ≥ 0

Dual variables may be outside the Box: δ− ≤ π ≤ δ+, but there is a
penalty.
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Analysis of Stabilization method (du Merle et al. 99)

Computational implementation of column generation:
now, the slack and surplus variables with a cost also have bounds.

(Ps )

min cx −δ−u−+δ+u+
s .t . Ax −u−+u+ = b

u− ≤ ε−
u+ ≤ ε+
x ,u−,u+ ≥ 0

(Ds)

max πb−ε−w−−ε+w+
s .t . πA≤ c

−π−w− ≤−δ−
π−w+ ≤ δ+
w−,w+ ≥ 0

Primal view: penalize deviation from valid solution (now deviation is
limited).
Last two groups of dual constraints: δ−−w− ≤ π ≤ δ++w+.

Dual view: dual variables outside a pre-defined box are penalized
(if π is outside the interval [δ−,δ+], the variables w− or w+ take a
positive value, penalizing the objective function).

size of Box is not so critical, because solutions outside Box are
allowed.
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Stabilizing terms: penalty / trust region
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Getting to the optimal solution

Adjustment of penalties at a given restricted master problem:
If any π is on the border of the interval, the penalty is not
sufficiently large, and the optimal solution of the stabilized problem
may not be valid for the original problem.
Adjust penalties !

The algorithm needs appropriate strategies for the adjustment of the
penalties so that the optimal solution is found rapidly.

At the optimal solution:
Complementary Slackness Theorem: if the optimal value of π is
strictly inside the interval [δ−,δ+], the constraints have slack and the
corresponding dual variables are null, that is, u− = u+ = 0, which
implies that Ax = b (valid for original model).
The same happens with ε− = ε+ = 0.
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Dual-optimal inequalities and deep dual-optimal
inequalities

Instead of just referring to "dual cuts", at some points, we will make a
distinction between the two different classes:

Dual-optimal inequalities:
All dual optimal solutions are preserved (as in the dual cuts for
Gilmore-Gomory model for the CSP).

Deep dual-optimal inequalities:
One may even effectively cut a subset of dual optimal solutions, if, at
least, one dual optimal solution is preserved.
One optimal dual solution is sufficient to drive the process to find the
optimum.
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Perturbing dual-optimal inequalities

Consider now the set of dual-optimal inequalities perturbed by
an ε : πD ≤ d +ε :

(Pe′ )
min cx + (d +ε)y
s .t . Ax +Dy = b

x ,y ≥ 0
(De′)

max πb
s .t . πA≤ c

πD ≤ d +ε

Proposition
Let πD ≤ d be a set of dual-optimal inequalities, and (x∗,y∗) an optimal
solution for Pe′ . Then, y∗ = 0 and x∗ is an optimal solution for P .

Proof: All dual-optimal solutions obey πD ≤ d and have slack in
πD ≤ d +ε. By complementary slackness, the corresponding primal
variables y∗ = 0. �

(Ben Amor,Desrosiers,VC’2006)
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Dual space of CSP with cut π1 ≥π2 perturbed by ε
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Columns of dual cuts will be 0 in any optimal solution [Ben Amor,
Desrosiers, VC, 2006].
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Dual inequalities for MLCSP

Dual-optimal inequality:

vk −vk ′ ≤Wk −Wk ′ , k = 1, ...,K −1,k ′ = 2, . . . ,K , Wk >Wk ′ .

Example: v1 −v2 ≤ 7−5.
Packing pattern of a bin can always be reassigned to a bigger bin at a
cost equal to the difference between their capacities (similar to cuts for
CSP, but used for bins).

Deep dual-optimal inequality:

vK ≥WK −W1

Example: v3 ≥ 3−7.

Proofs omitted.
Both inequalities can be perturbed by ε to force corresponding primal
variables to 0.
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Deep dual-optimal inequalities for MLCSP: example

v3 ≥−3−ε is a deep dual-optimal inequality (not in the tableau): sol.1 is
cut, but alternative optimal dual solution sol.2 is preserved.

dual
x1 x2 x3 x4 x5 x6 y1 y2 sol.1 sol.2

wi =3 2 1 1 ≥ 5 24 3 u1
2 3 1 2 2 ≥ 6 16 2 u2
1 1 1 1 1 ≥ 4 8 1 u3

Wk =7 1 1 1 ≤ 2 -49 0 v1
5 1 1 -1 1 ≤ 1 -35 0 v2
4 1 1 -1 ≤ 3 -28 0 v3

min 7 7 5 5 4 4 2 1

primal 2.0 0.0 0.0 1.0 1.0 2.0 0.0 0.0 z∗ = 31.0 31.0

Optimal solution: all bins are used: ∑m
i=1wibi =∑K

k=1Wkbk = 31.
In this case, ((k +1)w1,(k +1)w2,(k +1)w3,−kW1,−kW2,−kW3) is an
optimal dual solution for k ≥ 0.
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When an optimal dual solution is known

Given an optimal dual solution π∗ for D and a vector of scalars
∆> 0 ∈ IRm, use the stabilized pair of primal and dual problems:

v(P(π∗)) :=mincT x− (π∗−∆)T y1 + (π∗+∆)T y2
Ax−y1 +y2 = b

x≥ 0, y1 ≥ 0, y2 ≥ 0

v(D(π∗)) :=maxbTπ
ATπ≤ c

π∗−∆≤π≤π∗+∆.

Proposition

Let ETπ≤ e be a set of deep dual-optimal inequalities and (x∗,y∗1 ,y∗2) be
an optimal solution for P(π∗). Then, y∗1 = y∗2 = 0 and x∗ is an optimal
solution for P.

Proof: This result was proved in a previous session. �
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When an optimal dual solution is known: example

Proposition
Consider a CSP instance with no loss at optimality. Then, π∗

i = wi
W , i ∈ I is

an optimal dual solution.

Proof: All dual constraints are obeyed. The dual objective function
reaches the optimal value ∑m

i=1biwi /W . Therefore, this dual solution is
optimal. �

Computational results for binpacking triplet instances (OR-Library,
Beasley’90)

Reduction in number of columns: 90.2 % (from 124.2 to 12.2).
Size of box ∆= 10−2

(Ben Amor,Desrosiers,VC’2006)

© J.M. Valério de Carvalho, UMinho Decomposition Methods for Integer Programming 245



Complicating issues in the branch-and-price tree

Cuts were derived for the solution of the LP relaxation.
Some dual cuts fornot be valid in the branch-and-price tree.
Keep the valid cuts
Derive new cuts
Do not relax the optimal solution of a branch-and-price node.

First, let us show that some dual cuts are not valid in the
branch-and-price tree:
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Example: optimal solution of root node

Stock: lengths W = (7,5) with availabilities B = (5,5)
Items: sizes w = (4,3,2) and demands b = (2,5,2)

λ11 λ12 λ13 λ14 λ15 λ21 λ22 λ23
wi =4 1 1 1 ≥ 2

3 1 2 1 1 ≥ 5
2 1 2 3 1 2 ≥ 2

Wk =7 1 1 1 1 1 ≤ 5
5 1 1 1 ≤ 5

7 7 7 7 7 5 5 5

primal 2.0 0.0 0.5 0.0 0.0 0.0 2.0 0.0 z∗ = 27.5

Arc-flow model solution: x0,4 = 2, x4,7 = 2, x0,3 = 2.5, x3,6 = 0.5 and
x3,5 = 2.
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Example: optimal solution of a node of the
branch-and-price tree

Optimal solution after branching constraint x0,3 ≤ 0 on arc (0,3) is
enforced:

λ11 λ12 λ13 λ14 λ15 λ21 λ22 λ23
wi =4 1 1 1 ≥ 2

3 1 2 1 1 ≥ 5
2 1 2 3 1 2 ≥ 2

Wk =7 1 1 1 1 1 ≤ 5
5 1 1 1 ≤ 5

x0,3 ≤ 0 1 1 1 ≤ 0
7 7 7 7 7 5 5 5

primal 5.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 z∗ = 40.0

This branching constraint is just for illustration purposes (it would not be
selected in the branching scheme at this point).
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Example: dual inequality relaxes model

Optimal solution after branching constraint x0,3 ≤ 0 on arc (0,3) is
enforced, and there is a dual cut, corresponding to d1 :

λ11 λ12 λ13 λ14 λ15 λ21 λ22 λ23 d1
wi =4 1 1 1 -1 ≥ 2

3 1 2 1 1 1 ≥ 5
2 1 2 3 1 2 ≥ 2

Wk =7 1 1 1 1 1 ≤ 5
5 1 1 1 ≤ 5

x0,3 ≤ 0 1 1 1 ≤ 0
7 7 7 7 7 5 5 5 0

primal 3.5 0.0 0.0 0.0 2/3 0.0 0.0 0.0 1.5 z∗ = 29 1/6

Extra column replaces an item with size 4 by another with size 3, in the
pattern associated to λ11.
The resulting pattern is the same as the one associated to λ13.
There is a positive flow in arc (0,3), to which the branching constraint
does not apply.
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What causes the trouble...

Dual cuts are cycles in terms of the arc-flow model.
There are cycles involving the same exchanges but starting at different
positions.
They are mapped into the same dual cut of Gilmore-Gomory model,
when applying the Dantzig-Wolfe decomposition, but branching
constraints act on single arcs.

When, combining a pattern Pi with a column related to a dual cut results
in a pattern Pj with one of the following characteristics

• pattern Pj has a null coefficient in the branching constraint on an
arc (s ,t), when Pj does in fact translate into a set of arcs that
include this arc (as in the last Example).

• pattern Pj has a +1 coefficient in the row of a branching constraint
enforced on an arc (s ,t), but Pj does not translate into a set of arcs
that include (s ,t) (as in the next Example);

the branching constraint enforced on an arc (s ,t) does not act correctly
over the columns producing flow on (s ,t).
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Another example: dual inequality causes trouble

Optimal solution after branching constraint x0,3 ≤ 0 on arc (0,3) is
enforced, and there is a dual cut, corresponding to d2 :

λ11 λ12 λ13 λ14 λ15 λ21 λ22 λ23 d2
wi =4 1 1 1 ≥ 2

3 1 2 1 1 -1 ≥ 5
2 1 2 3 1 2 1 ≥ 2

Wk =7 1 1 1 1 1 ≤ 5
5 1 1 1 ≤ 5

x0,3 ≤ 0 1 1 1 ≤ 0
7 7 7 7 7 5 5 5 0

Combining column λ14 with column d2 yields a new column, similar
to λ15 but with a +1 coefficient in the row of a branching constraint
enforced on arc (0,3), but the new column does not have arc (0,3).
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Two sufficient conditions for validity

A subset of dual inequalities for the CSP remain valid in node w of the
branching tree.
Subset depends on the specific set of arcs on which a branching
constraint is enforced.

Proposition

For all the arcs (s ,t) on which at least one branching constraint has been
enforced at node w, and for an item i and a subset S of the item sizes
such that wi ≥∑

l∈S wl , if at least one of the following conditions holds
• t − s >wi : branching constraints act on items larger than wi ,

• ∑
l∈S:wl>t−s wl > s : dual cut will not produce size (t − s) before

position s ,

then ui ≥∑
l∈S ul will be a valid dual-optimal inequality for De at node w.

Condition (1): Branching on larger arcs (typical in branching scheme)
enables keeping the dual cuts for smaller items.
Condition (2): see next page
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About the validity of condition (2)

Dual cut will not produce size (t − s) before position s :
∑

l∈S:wl>t−s wl > s

q q q q q q q q q q0 s t
-

�

- -

w1 > t − s w2 > t − s w3

--

There may be arcs of length (t − s) in the dual cut (strictly after
position s), but branching constraint on arc (s ,t) will not be "cheated".
Gilmore-Gomory model assumes items placed in order of decreasing sizes.
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New family of dual inequalities

Inequalities depend on the dual variables for the demand and branching
constraints.

Proposition

At a node w, and for a single item i and subset of item sizes S such that
wi ≥∑

l∈S wl , the following dual inequalities

ui ≥
∑
l∈S

ul +
∑

{l∈Gw :t−s≤wi }
µl

s ,t −
∑

{l∈Hw :t−s≤wi }
ν l

s ,t , i = 1, . . . ,m, ∀S ,(10)

are valid dual-optimal inequalities for D.

Gw ,Hw : sets of branching constraints of the types ≤ and ≥, respectively
in node w .
µl

s ,t ,ν l
s ,t : dual variables associated to ≤ and ≥ constraints, respectively,

indexed by l , acting on flow of arc (s ,t).
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New family of dual inequalities: example

u2 ≥ u3 +
∑

{l∈Gw :t−s≤3}
µl

s ,t −
∑

{l∈Hw :t−s≤3}
ν l

s ,t

λ11 λ12 λ13 λ14 λ15 λ21 λ22 λ23 d2
wi =4 1 1 1 ≥ 2

3 1 2 1 1 -1 ≥ 5
2 1 2 3 1 2 1 ≥ 2

Wk =7 1 1 1 1 1 ≤ 5
5 1 1 1 ≤ 5

x0,4 ≥ 1 1 1 1 ≥ 1
x0,3 ≥ 1 1 1 1 -1 ≥ 1
x0,3 ≤ 4 1 1 1 1 ≤ 4
x3,6 ≥ 1 1 -1 ≥ 1
x3,6 ≤ 2 1 1 ≤ 2
x3,5 ≤ 1 1 1 1 ≤ 1

7 7 7 7 7 5 5 5 0

There is a pattern column that dominates a combination of a pattern
column with a dual cut column.
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Computational results: summary

Results for MLCSP improve significantly when dual inequalities are
applied in the whole branch-and-bound tree (stabilized
branch-and-price-and-cut algorithm).
Using cuts that remain valid in branching tree and new family of cuts.

50 hard instances (Belov’2002)
Optimum is reached using less 70% branching nodes.
Computing time is reduced 50%.
47 were solved to optimality, instead of 45.
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A word about a nice result

Different primal models with equally constrained dual spaces take the
same number of iterations.

Experiment 1
BinaryCSP model (disaggregated demand): there is a constraint for each
item of the same size (demand is equal to 1).
Solution of BinaryCSP takes more iterations than CSP.
Experiment 2
Add dual constrains saying that dual variables of items of the same size
should be equal.
Solution of BinaryCSP takes approximately the same number of
iterations as CSP.

(Ben Amor,Desrosiers,VC’2006)
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Approaches

Stabilization
General framework, which is not problem dependent.
Adjustments of stability center may be needed.

Dual cuts
Derivation relies on characterization of the space of dual optimal
solutions.
Problem dependent, not easy to derive.
Valid through entire column generation process.

Combination
Using dual cuts amounts to solving an alternative primal model (equally
strong) with a more restricted dual space.
Stabilization and dual cuts can be combined.
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Concluding remarks

Strength of models is of crucial importance.
Dual cuts make column generation faster keeping models strong.
Restriction of dual space may be an important factor for faster
convergence.
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Part VI

Practical issues, accelerating strategies and
heuristics
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Outline

Pre-processing
Master problem
Subproblem
Branch-and-bound
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Pre-processing

Arc elimination
Initial Primal Solutions
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Arc elimination

Using a feasible primal integer solution and a feasible dual solution to the
relaxation of the problem to fix a path variable to 0:

Lemma
Given (IP) : min{cx :Ax = b,x = (xi )i∈{1,...,n} ∈ {0,1}n}.

π : feasible dual solution of the LP-relaxation of IP, with value πb.

U : upper bound for IP, given by a feasible primal integer solution.
If, for some p ∈ {1, . . . ,n}, πb+ (cp −πAp)>U , then xp = 0 in all
optimal solutions of IP .

In the integer problem (IP), xp is a binary variable.
Idea of proof: the lagrangean lower bound of the problem
with xp = 1 is above the upper bound.
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Arc elimination (cont.)

Proof:
Consider modified problem where xp is fixed to 1 and
xi ≥ 0,∀i ∈ {1, . . . ,n}\{p} :

min{cx +cp :Ax = b−Ap ,xi ≥ 0,∀i ∈ {1, . . . ,n}\{p},xp = 0}.

Dual of modified problem: max{(b−Ap)π :πA≤ c}

lagrangean of modified problem:

zLR(π) = cp +min
x\xp

{cx +π((b−Ap)−Ax)} =

= (cp −πAp)+πb+min
x\xp

{(c −πA)x)}

in dual feasible solution, πA≤ c .

given a feasible dual solution π, the lagrangean lower bound of
modified problem >U .
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Arc elimination (cont.)

Using a feasible primal integer solution and a feasible dual solution to the
relaxation of the problem to fix an arc variable to 0:

jis t

...

jis t
...

Variable fixing
Consider the paths p = (s , . . . , i , j , . . . ,t) that contain arc (i , j).

If πb+minp:(i ,j)∈p(cp −πAp)>U , then arc (i , j) can be eliminated.
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Initial Primal solutions

Starting solutions for column generation:
Polynomial heuristics: First Fit Decreasing and Best Fit Decreasing
Pseudo-polynomial heuristics
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First Fit Decreasing (FFD) and Best Fit Decreasing
(BFD) heuristics

FFD : largest unplaced item is assigned to the bin with smallest index
already used with sufficient remaining capacity; if there is none, a new
bin is started.
BFD : largest unplaced item is assigned to the bin with smallest
remaining capacity, but still sufficient to accommodate the item; if there
is none, a new bin is started.
FFD and BFD have absolute performance ratios of 3/2, i.e., zH ≤ 3/2 z∗,
where z∗ is the value of the optimum (Simchi-Levi’94).
Absolute performance ratios:

First-Fit Decreasing – 3
2 .

Best-Fit Decreasing – 3
2 .

Asymptotic performance ratios:
First-Fit Decreasing – 11

9 .
Best-Fit Decreasing – 11

9 .
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FFD: example of asymptotic performance ratio of 11/9

Asymptotic performance ratio: happens even in large instances.
Example: optimal solution uses 9N bins, heuristic solution uses 11N bins.

26 23
26 23
26 23
26 23
26 23
26 23

27 27 23 23
27 27 23 23
27 27 23 23

51
51
51
51
51
51

51
51
51
51
51
51

27
27
27
27
27
27

26
26

26
26

26
26

23 23
23 23
23 23

23 23
23 23
23 23

z∗ = 9N zFFD = 11N

Absolute performance ratio: only in instances with a small number of
bins.
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Pseudo-polynomial heuristics

Greedy (myopic) heuristic, based on iterative solution of knapsack
problems:
Build list with all items
While (there are items in the list) do

solve knapsack problem
remove items in the solution from the list
(repeat removal, if there are multiple copies of all items)

End While

Computation time is not significant in the column generation
framework.
Usually provides good starting solutions, with, at least, some very
good cutting patterns.
Last patterns may be very poor.
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Pseudo-polynomial heuristics (two implementations)

Vanderbeck’99:
among the solutions with maximum capacity usage, ∑

i wiyi ,
choose the one that is lexicographically smaller when considering a
solution vector where the items are ordered by non-increasing sizes
(w1 ≥w2 ≥ . . . ≥wm).

VC’05:
use weights wi = item sizes and profits pi = (1− (j −1)/n) wi ,∀i , to
favor choice of solutions with larger items, leaving the smaller items,
which should be easier to combine, to subsequent iterations
preferable to solving a subset-sum problem,
max{

∑
i wiyi :

∑
i wiyi ≤W ,yi ≥ 0 and integer,∀i}, which is, in

practice, difficult to solve [Martello, Toth’90].

They provide much better starting solutions than FFD or BFD.
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Master Problem

Column elimination
Constraint aggregation
Multiple columns at each iteration
Stabilization [Part V]
Dual cuts (including covering vs. partitioning constraints) [Part V]
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Column elimination

Most probably many columns of the RMP will not be used in the optimal
solution. Periodically,

purge columns with reduced cost above a pre-defined threshold, or
purge columns with zero value for a predefined number of iterations.
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Constraint aggregation

CSP [Alves, VC’07]
Basic algorithm:

pick two similar item sizes and aggregate demands (e.g., use larger
item size).
less constraints and smaller subproblem
solution of aggregated model may be "sub-optimal"
at the end, disaggregate to check if re-optimization is necessary.

Also more effective n-phase algorithm.

VR & CS [Elhallaoui, Villeneuve, Soumis, Desaulniers’05]
Vehicle routing and crew scheduling:
Aggregation according to an equivalence relation that changes
dynamically over time.
Shortest path problem used to recover the non-aggregated dual
information
Master problem time reduced by a factor of 8.
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Multiple columns at each iteration

when problem has several subproblems, use the dual information of
the RMP to generate columns from all the subproblems, and insert
them all in the RMP, before re-optimizing.
if possible, pick not only the optimal solution of subproblem, but
also 2nd , . . . ,kth best solutions (there are cases with 3 to 10
columns).
furthermore, use heuristics to find columns that are orthogonal
together with the most attractive (i.e., that may combine better to
form a solution).
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Subproblem

Heuristic pricing
State space reduction

© J.M. Valério de Carvalho, UMinho Decomposition Methods for Integer Programming 275



Heuristic pricing

Subproblem may be a problem difficult to solve practically.
Try to get close to the optimal solution using heuristics.
Only resort to solving subproblem optimally when no more attractive
solutions are found.

Example
use different heuristic algorithms along the process.
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Space state reduction

Temporarily reduce the burden of the dynamic programming
subproblem,
Then resort to solving subproblem optimally.

Example
in problems with time constraints, start with a less precise definition
of time,
start with a subset of clients or items.
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Branch-and-bound

Early branching
Upper bounds
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Early branching

For problems with integer cost coefficients, cj , ∀j , given
z : value of the current solution of column generation process, and
LB : a lower bound,
if dze = dLBe,

column-generation process can be cut off to reduce the tail.

One can also terminate heuristically earlier.
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Upper bounds

use depth first search (possibly making a single dive) to try to get a
good incumbent solution, which may help fathoming nodes later
during the full exploitation of the tree.
use heuristics (more or less elaborate) at each node of the tree.
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Other issues

G. Desaulniers, J. Desrosiers, M. Salomon, Accelerating strategies in
column generation methods for vehicle routing and crew scheduling
problems, Cahiers GERAD G-99-36, and in Essays and Surveys in
Metaheuristics, C. Ribeiro and P. Hansen (eds.), Kluwer Academic
Publishers, 309-324, 2002.
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Concluding remarks

Practical issues may reduce computational time significantly.
They are problem dependent, and have to be tailored.
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Part VII

Primal cutting planes
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Outline

Separation and row generation
Row generation in column generation models: compatibility
Strengthening column generation models
Super-additive Non-decreasing Functions and Dual Feasible
Functions
Application: multicommodity flow problem
Application: minimization of number of set-ups in CSP
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Separation problem

Given a fractional solution, the separation problem finds a valid inequality
for the integer problem that cuts the current fractional solution.

Given a family of valid inequalities, we may (try to) search the valid
inequality (primal cut) of the family which is more violated.
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Column generation models with primal cuts: compatibility

Primal cuts lead to stronger models.
When primal cut is explicitly inserted in the RMP,
and provides dual information,
in the subproblem, we must be able to anticipate the coefficient of
the column in the primal cut,
so that the attractiveness of the column is correctly evaluated.
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Valid inequalities

should be easy to deal with if they can be expressed in terms of the
original variables:

add constraint to RMP,
use dual information of constraint to change the reduced cost of
original variables.
application: binary multicommodity flow problem
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Binary multicommodity flow problem: subproblem
min

∑
k∈K

∑
p∈Pk

qkck
p yk

p (11)

subj. to
∑

k∈K

∑
p∈Pk

δ
p
ijq

kyk
p ≤ uij , ∀(i , j) ∈A (12)

∑
p∈Pk

yk
p = 1, ∀k ∈K (13)

yk
p ∈ {0,1}, ∀p ∈Pk ,∀k ∈K (14)

−πij : nonnegative dual variables associated to constraints (12)
σk : unrestricted dual variables associated to constraints (13)
coefficient qk in all constraints (12), i.e., in all the arcs of the path.

Reduced cost of column p :

ck
p = ∑

(i ,j)∈A
qkδp

ijc
k
ij − (

∑
ij∈A

qk(−πij)δ
p
ij +σk)=

= ∑
ij∈A

qk(ck
ij +πij)δ

p
ij −σk , ∀p ∈Pk ,∀k ∈K .
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Solution shown in Example with 5 commodities

yblue
1 yorange

1 ygreen
1 y red

1 yyellow
1

(1,2) 10 ≤ 10
(1,3) 7 ≤ 12
(2,4) 10 11 ≤ 32
(2,5) 8 ≤ 8
(3,5) 7 5 ≤ 12
(4,6) 5 11 ≤ 16
(5,6) 7 5 11 ≤ 24
1 1 = 1
2 1 = 1
3 1 = 1
4 1 = 1
5 1 = 1

min 20 14 16 10 22
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Binary multicommodity flow problem: subproblem (cont.)

Solve one subproblem for each commodity k :

Shortest path problem with arcs with reduced costs ck
ij +πij , for each

commodity k .

adjust reduced cost of optimal path p∗ using qk and use dual
information σk to evaluate column p∗ :

Column p∗ is attractive for commodity k , if

ck
p∗qk −σk < 0
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Knapsack constraints and cover inequalities
Given a knapsack constraint

S = {x ∈ {0,1}n :
∑
i
aixi ≤ b, a ∈Nn, b ∈N, ai ≤ b,∀i}.

C ⊆ {1, . . . ,n} is a cover if ∑
i∈C ai > b.

Cover inequalities ∑
i∈C xi ≤ |C |−1 are valid inequalities for the integer

problem.

A cover is minimal if, for each k ∈C ,(
∑

i∈C ai )−ak ≤ b.

Example knapsack constraint
9x1 +7x2 +6x3 +4x4 +4x5 ≤ 12

cover some minimal cover inequalities
{1,2} x1 +x2 ≤ 1
{1,3} x1 +x3 ≤ 1
{2,3} x2 +x3 ≤ 1

{2,4,5} x2 +x4 +x5 ≤ 2
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Lifted cover inequalities (LCI)

Given a cover inequality for a cover C (and C = {1, . . . ,n}\C), a stronger
inequality can be found:

lifting:
determining the largest coefficients αi , αi ≥ 0, in∑

i∈C
xi +

∑
i∈C

αixi ≤ |C |−1

such that the LCI is still valid for set S .

each element in C , is lifted, one at a time, in a pre-chosen sequence, by
solving a series of knapsack problems (one for each member of C).

Different LCIs can be found depending on the sequence
Finding the most violated LCI is NP-hard [Gu et al. ’95].
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Lifted cover inequalities(cont.)

Example knapsack constraint
9x1 +7x2 +6x3 +4x4 +4x5 ≤ 12

cover minimal cover inequality
{2,4,5} x2 +x4 +x5 ≤ 2

First element in sequence: lifting α1

α1x1 +x2 +x4 +x5 ≤ 2

if x1 = 0, the inequality is valid ∀α1.

if x1 = 1, the inequality is valid if and only if:

α1 +x2 +x4 +x5 ≤ 2

is valid for all {x2,x4,x5} ∈ {0,1}3 that obey the constraint

7x2 +4x4 +4x5 ≤ 12−9
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Lifted cover inequalities(cont.)

Example knapsack constraint
9x1 +7x2 +6x3 +4x4 +4x5 ≤ 12

cover minimal cover inequality
{2,4,5} x2 +x4 +x5 ≤ 2

First element in sequence: lifting α1 (cont.)
α1x1 +x2 +x4 +x5 ≤ 2
The maximum value that x2 +x4 +x5 can take when
7x2 +4x4 +4x5 ≤ 12−9 is 0.
So, α1 can be equal to 2.
Problem solved is to find largest α1 :

α1 +max {x2 +x4 +x5 : 7x2 +4x4 +4x5 ≤ 12−9,x ∈ {0,1}3} ≤ 2
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Lifted cover inequalities(cont.)

Example knapsack constraint
9x1 +7x2 +6x3 +4x4 +4x5 ≤ 12

cover LCI after lifting α1
{2,4,5} 2x1 +x2 +x4 +x5 ≤ 2

Second element in sequence: lifting α3
2x1 +x2 +α3x3 +x4 +x5 ≤ 2
The maximum value that 2x1 +x2 +x4 +x5 can take when
9x1 +7x2 +4x4 +4x5 ≤ 12−6 is 1.
So, α3 can be equal to 1.
Problem solved is to find largest α3 :

α3+max {2x1+x2+x4+x5 : 9x1+7x2+4x4+4x5 ≤ 12−6,x ∈ {0,1}4} ≤ 2
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Lifted cover inequalities(cont.)

Example knapsack constraint
9x1 +7x2 +6x3 +4x4 +4x5 ≤ 12

cover LCI with sequence 1, 3
{2,4,5} 2x1 +x2 +x3 +x4 +x5 ≤ 2
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Application: Binary multicommodity flow problem

Barnhart et al. ’00:
Constraints in the original arc-flow model are knapsack constraints:∑

k∈K
qkxk

ij ≤ uij , ∀(i , j) ∈A

and LCI can be derived:∑
k∈C

xk
ij +

∑
k∈C

αkxk
ij ≤ |C |−1

The LCI is expressed in terms of the original arcflow variables.
Each LCI is associated with a given arc (i , j)
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Application: Binary multicommodity flow problem

Given xk
ij =

∑
p∈P yk

p δ
p
ij ,

the LCI ∑
k∈C xk

ij +
∑

k∈C αkxk
ij ≤ |C |−1

can also be expressed in terms of the (reformulated) path model:∑
k∈C

1
∑
p∈P

yk
p δ

p
ij +

∑
k∈C

αk
∑
p∈P

yk
p δ

p
ij ≤ |C |−1

The LCI for a given arc (p,q) involves all commodities.
It is explicitly added to the restricted master problem.
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Application: Binary multicommodity flow problem

Transferral of dual information of∑
k∈C

1
∑
p∈P

yk
p δ

p
ij +

∑
k∈C

αk
∑
p∈P

yk
p δ

p
ij ≤ |C |−1 :

−γpq : dual variable associated to a given LCI associated to
arc (p,q).

We can anticipate, while solving the subproblem, which will be the
coefficient of the new column in the RMP, for each LCI previously
added in the RMP, for each commodity k . It will be αk

pq (where
αk

pq = 1, if k ∈C).

Dual information of the LCI is used to change the reduced cost of
one arc (p,q) for commodity k

ck
pq = ck

pq +πpq +αk
pqγpq , ∀k ∈K ,

leading to the reduced cost of path.
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Binary multicommodity flow problem: remarks

Use of cuts dramatically decreased the number of nodes searched in
the instances for which the optimal solution was found.
For most of the other instances, it decreased the optimality gap.
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Other types of cuts

Supperadditive functions
Dual feasible functions (DFF)
Primal cuts derived from dual feasible functions (maximal DFF)
Their use in column generation
Application in the minimization of number of set-ups of the CSP
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Superadditive functions [Nemhauser,Wolsey,1988]

A function F :D ⊆ IRm → IR1 is called superadditive if

F (d1)+F (d2)≤F (d1 +d2), ∀d1,d2,d1 +d2 ∈D.

A function F :D→ IR1 is called nondecreasing over D if d1,d2 ∈D
and d1 ≤ d2 implies F (d1)≤F (d2).

Assume F (0)= 0 and 0 ∈D

Nice result
Nemhauser,Wolsey’88: Every valid inequality for a nonempty set
S =Z∩ {x ∈ IRn

+ :Ax ≤ b} is equivalent to or dominated by a superadditive
valid inequality.
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Superadditive valid inequalities [Vanderbeck’2000]
Superadditive nondecreasing function F γ(z)=max

{
0,

⌈γz
b

⌉−1
}
, with

γ ∈ {2, . . . ,b}
Superadditive inequalities∑

i

(⌈γai
b

⌉
−1

)
xi ≤ γ−1,

are valid inequalities for

X = {x ∈Nn :
∑
i
aixi ≤ b, a ∈Nn, b ∈N, ai ≤ b,∀i}.

Example
9x1 +7x2 +6x3 +4x4 +2x5 ≤ 12

ai /b 0.75 0.58 0.5 0.33 0.17

γ= 2 1x1 +1x2 ≤ 1
γ= 3 2x1 +1x2 +1x3 ≤ 2
γ= 4 2x1 +2x2 +1x3 +1x4 ≤ 3
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Dual feasible functions (DFF)

A function f : [0,1]→ [0,1] is said to be dual feasible if, for any finite set
of real numbers S ⊆ [0,1],∑

x∈S
x ≤ 1⇒ ∑

x∈S
f (x)≤ 1

Applications

Lower bounds in combinatorial enumeration algorithms:
Fekete,Schepers’97: Let I := (x1, . . . ,xn) be a BPP instance and let u be a
DFF. Then, any lower bound for the transformed BPP instance
u(I) := (u(x1), . . . ,u(xn)) is also a lower bound for I .
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Redundant functions (Carlier,Néron’2005)

Independently, a discrete version was also proposed:
A function f : [0,W ]→ [0,W ′], W and W ′ integers, is said to be a
redundant function, or discrete dual feasible function, if, for any

w1 +w2 + . . .+wk ≤W ⇒ f (w1)+ f (w2)+ . . .+ f (wk)≤ f (W )=W ′

Applications

Cuts for integer programming in LP based optimization:
Alves,VC’2008: if integer solution obeys initial constraint, it will also
obey modified constraint; possibly, fractional solutions are cut.
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Dual feasible functions: example 1 [Fekete,Schepers,2001]

Let ε ∈
[
0,

1
2

]
u(ε)1 : [0,1]→ [0,1]

x �→
⎧⎨⎩

0, for x < ε,
x , for ε≤ x ≤ 1−ε,
1, for x > 1−ε,

�

�

�

�

�

�

ε 1−ε x

u(ε)1 (x)

Formalizes Martello and Toth’s lower bound L2 for bin-packing.

Proposition (Alves,VC’2008)

Function u(ε)1 is nondecreasing and superadditive over [0,1] , for ε ∈ [0, 1
2 ].
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Dual feasible functions: example 2 [Fekete,Schepers’2001]

DFF u(k), k ∈N, slightly improves a function proposed earlier by
Lueker’83.

u(k) : [0,1]→ [0,1]

x �→
{

x , for (k +1)x ∈Z,
�(k+1)x�

k , otherwise.

�

�

�

�

�

x

k = 1u(1)(x)

1
2

�

�

�

�

�

��

� x

k = 2u(2)(x)

1
3

2
3

�

�

�

�

�

�

� �

� �

�

x

k = 3u(3)(x)

1
4

1
2

3
4
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Superadditive valid inequalities from DFF

Function u(k) is nondecreasing.

Proposition (Alves,VC’2008)

For k ∈N, u(k) is superadditive over [0,1].

Proof: Omitted �
Proposition

The inequality ∑
i

u(k)
(ai

b
)
xi ≤ 1, k ∈N

is a valid inequality for integer knapsack polytopes
S = {x ∈Nn :

∑
i aixi ≤ b, a ∈Nn, b ∈N, ai ≤ b, ∀i}.

Proof: It is superadditive and nondecreasing (follows from
Nemhauser,Wolsey’88). �
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Valid inequalities from DFF: example

9x1 +7x2 +6x3 +4x4 +2x5 ≤ 12

ai/b 0.75 0.58 0.5 0.33 0.17
k = 1 1x1 +1x2 +1

2x3 ≤ 1

k = 2 1x1 +1
2x2 +1

2x3 +1
3x4 ≤ 1

k = 3 3
4x1 +2

3x2 +1
2x3 +1

3x4 ≤ 1

�

�

�

�

�

x

k = 1u(1)(x)

1
2

�

�

�

�

�

��

� x

k = 2u(2)(x)

1
3

2
3

�

�

�

�

�

�

� �

� �

�

x

k = 3u(3)(x)

1
4

1
2

3
4
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Comparative strengths

Proposition

The inequality ∑
i
u(k)

(ai
b

)
xi ≤ 1, k ∈N

is a valid inequality for integer knapsack polytopes that is equivalent or
dominates ∑

i

(⌈γai
b

⌉
−1

)
xi ≤ γ−1, γ ∈ {2, . . . ,b}.

Proof: Let zi = ai
b . Vanderbeck’s inequalities can be rewritten as:∑

i
dγzie−1
γ−1 xi ≤ 1.

Let k = γ−1.

For γzi ∉Z, we have u(k)(zi )= b(k+1)zi c
k = bγzi c

γ−1 = dγzi e−1
γ−1 .

For γzi ∈Z, we have
u(k)(zi )= zi ≥ dγzi e−1

γ−1 = d(k+1)zi e−1
k = (k+1)zi−1

k = zi + zi
k − 1

k , since zi ≤ 1.
�
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Comparative strengths: example (cont.)

9x1 +7x2 +6x3 +4x4 +2x5 ≤ 12

γ= 2 1x1 +1x2 ≤ 1

γ= 3 1x1 +1
2x2 +1

2x3 ≤ 1

γ= 4 2
3x1 +2

3x2 +1
3x3 +1

3x4 ≤ 1

k = 1 1x1 +1x2 +1
2x3 ≤ 1

k = 2 1x1 +1
2x2 +1

2x3 +1
3x4 ≤ 1

k = 3 3
4x1 +2

3x2 +1
2x3 +1

3x4 ≤ 1
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Maximal DFF (MDFF) [Carlier, Néron’02]

MDFF are not dominated by any other valid DFF.

Definition

Let f and f ′ be two DFF. f is dominated by f ′ (f ≤ f ′) if f (ci )
f (C)

≤ f ′(ci )
f ′(C)

for

all ci ≤C. Moreover if there exists a value j such that f (cj )
f (C)

< f ′(cj )
f ′(C)

, f is
strictly dominated by f ′ (f < f ′).

Definition
A DFF f is an MDFF if there does not exist any DFF f ′ such that f ′ > f .
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Characterization of Maximal DFF

Proposition (Carlier, Nerón ’02)
A DFF f is an MDFF if and only if the following conditions hold:

f is nondecreasing,
f is superadditive,
f is symmetric (∀x ∈ [0,C ], f (x)+ f (C −x)= f (C)),
f (0)= 0.
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A way of creating a MDFF

Theorem

Let f be a superadditive and nondecreasing function defined from [0,C ]
to [0, f (C)], and such that f (0)= 0. The following function is a maximal
DFF.

f̂ : [0,C ] → [0,2f (C)]

x 7→


2f (C)−2f (C −x), for C ≥ x > C

2 ,
f (C), for x = C

2 ,
2f (x), for x < C

2 .

Proof: omitted.

Using this result, many well-known superadditive functions can lead to
MDFF.
Note that f̂ dominates f , but it is not the only function to dominate f .
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Compositions and linear combinations of DFF and MDFF

Proposition (Nemhauser, Wolsey ’88)
A composition, or a positive linear combination of superadditive functions
is superadditive.

If f and g are superadditive, then λf , bf c, f +g , min{f ,g } are
superadditive.
Some results concerning the safe operations for superadditivity also hold
for MDFF (sum, composition), while other do not (min, for example).
These properties hold when discrete functions are considered.

Proposition
If f and g are MDFF, then f +g, λf and f ◦g are MDFF.
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Branch-and-price-and-cut methodology

Given solution of restricted master problem at a given node of the
search tree:
Using one, or several, families of cuts (e.g., depending on k).
Find most (or, first, or other) violated cut
Add to model, and re-optimize
Proceed with column generation
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Using dual feasible functions to derive cuts

In the subproblem, we are able to anticipate the coefficient that the
column will have in the primal cut,
because it comes from mapping the value of the coefficient of a
constraint of the original model, and
so we can correctly evaluate the attractiveness of the column.

In the setting of column generation, for general problems, with no special
structure, cuts from DFF may be useful in strengthening models.
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Minimization of number of set-ups: model

First, solve CSP to find z∗CSP .
z∗CSP : minimum number of rolls needed.
Then, the model is:

min zIP = ∑
j∈J

δ(xj)

subj. to
∑
j∈J

aijxj = bi , i = 1,2, . . . ,m∑
j∈J

xj ≤ z∗CSP

xj ≥ 0 and integer , ∀j ∈ J

δ(xj)=
{

1, if xj > 0
0, if xj = 0
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Model for min. number of set-ups [Vanderbeck,2000]

λjn : usage of the pattern j replicated n times (pattern multiplicity)
u(Jj) : maximum value of n for a pattern j , equal to mini=1,...,m

⌊
bi
aij

⌋
.

min
∑
j∈J

u(Jj )∑
n=1

λjn

subj. to
∑
p∈P

u(Jj )∑
n=1

naipλjn = bi , i = 1, . . . ,m,

∑
j∈J

u(Jj )∑
n=1

nλjn ≤ z∗CSP ,

λjn ∈ {0,1}, j ∈ J , n= 1, . . . ,u(Jj).

Cuts used for integer knapsack polytope.
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Strengthening Vanderbeck’s model

For cutting pattern j , the associated trim loss Tj is:

Tj =W −
m∑

i=1
aijwi .

New waste constraint added to the model:

∑
p∈P

u(Jj )∑
n=1

nTjλjn = zCSPW −
m∑

i=1
wibi

At optimum, all constraints are obeyed without slack.
Cuts from DFF derived from:

demand constraints
maximum number of rolls constraint
waste constraint
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Minimization of number of set-ups: example

Example similar to one used before, but b3 = 7.
Integer solution of CSP z∗CSP = 6⇒ loss= 2.

λ11 λ12 λ21 λ22 λ31 λ32 λ33 λ41 λ42 λ51 λ52 λ61
wi = 4 2 4 1 2 1 2 3 = 5

3 1 2 2 4 1 2 = 4
2 2 4 6 1 2 2 4 4 = 7

loss = 1 1 2 1 2 = 2
z∗CSP 1 2 1 2 1 2 3 1 2 1 2 1 ≤ 6
min 1 1 1 1 1 1 1 1 1 1 1 1

Non-maximal (with loss=2) patterns of multiplicity 1 are not represented.
Cut derived from demand constraint w3 = 2 with DFF u(1)(x)(k = 1) :

λ11 λ12 λ21 λ22 λ31 λ32 λ33 λ41 λ42 λ51 λ52 λ61
k = 1 1 1 1 1 ≤ 1
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Primal cuts: some computational results

Comparison for 16 instances from real-life problems [Vanderbeck,2000]
Time limit: 2 hours.
Values of the LP optima are improved by 21.5%, at root node.
60% less nodes in average than [Vanderbeck, 2000].
Still, only one more instance is solved (13, instead of 12).

3600 instances [Alves, VC,2008]

m average demand instances solved average optimality gap
20 10 100 %
20 20 or 30 89 % ≤ 3%
30 57.6 % 8.9 %
40 33.5 % 12.1 %

Time limit: 10 minutes.
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Minimization of number of set-ups: remarks

Problem of minimizing the number of set-ups in the CSP is very
hard.
Looking at ties between polyhedral theory and DFF may help in
getting more useful cuts.
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Cuts expressed in terms of the reformulated variables

Some valid inequalities are powerful for set partitioning problems

may not be so easy to deal with if they are expressed in terms of the
reformulated variables

example: constraints for set partitioning (reformulated) problem,
structure of subproblem is modified.
reference: vehicle routing problem
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Set packing problems

S : finite set with m elements,
S1,S2, . . . ,Sn, a collection of subsets of S .

A packing of S is a collection of subsets, Si1 , . . . ,Sij , . . . ,SiK , identified
by i1, . . . , ij , . . . , iK , such that:

∪k
j=1Sij ⊆ S

Sii ∩Sij = ;, ∀i , j

The set of solutions of a packing problem is a relaxation of the set
of solutions of the corresponding partitioning problem.
Every valid inequality for a packing problem is also valid for the
corresponding partitioning problem.
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Valid inequalities

Graph G = (V ,A) where arc (i , j) ∈A if i and j are conflicting vertices.

clique inequalities:
clique Kp is a complete subgraph with p vertices.∑

i∈Kp

xi ≤ 1

odd hole inequalities:
cycle Cp with an odd number,p, of vertices.∑

i∈Cp

xi ≤ bp/2c
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Valid inequalities for set packing problems

Set packing problem

max{cx :Ax ≤ 1,x ∈ {0,1}n}, and A ∈ {0,1}m×n.

Example:

x1 x2 x3 x4 x5 x6 x7
1 1 1 1 1 ≤ 1
2 1 1 1 1 ≤ 1
3 1 1 1 1 ≤ 1

solution: 0.5 0.5 0.5

1

32

cycle C3 inequality:
x1 +x2 +x3 ≤ 1

Also happens to be a clique inequality.
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Valid inequalities for set packing problems (cont.)

Set packing problem

max{cx :Ax ≤ 1,x ∈ {0,1}n}, and A ∈ {0,1}m×n.

Example:

x1 x2 x3 x4 x5 x6 x7
1 1 1 1 1 ≤ 1
2 1 1 1 ≤ 1
3 1 1 1 1 ≤ 1
4 1 1 1 1 ≤ 1

solution: 0.33 0.33 0.33 0.33 0.33 0.33

21

34

clique K4 inequality:
x1 +x2 +x3 +x4 +x5 +x6 ≤ 1
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Reference: vehicle routing problem with time windows

Exploits structures of the reformulated problem
Handled successfully, because valid inequalities are expressed in
terms of combinations of other rows.
Subset row inequalities (SR) are Chvátal-Gomory rank-1 cuts.
pricing problem becomes a shortest-path problem with nonadditive
nondecreasing constraints or objective function
can be handled modifying the dominance criteria, in the label-setting
algorithm.
open instances solved to optimality.

M. Jepsen, B. Petersen, S. Spoorendonk, D. Pisinger, "Subset-Row
Inequalities Applied to the Vehicle-Routing Problem with Time
Windows", Operations Research, Vol. 56, No. 2, pp. 497Ű511, 2008.
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Concluding remark

Primal cuts are as important in branch-and-price as they are in
branch-and-cut.
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Part VIII

Lower Bounds and Heuristics
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Outline

Lower bounds
Trivial lower bound
Farley’s bound
Lagrangean bound
Lasdon bound
bounds from Dual Feasible Functions (in Part VII)
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Lower bounds for CSP

Duality is a tool for deriving lower bounds (for minimization problems):
Find a feasible dual solution, which obeys all dual constraints
corresponding to all valid columns.
Using the weak duality theorem:
The objective function value of the feasible dual solution is a Lower
Bound to the value of the optimal solution of the minimization
problem.

Examples:
Trivial lower bound
Farley’s bound
Lagrangean bound
bounds from Dual Feasible Functions (in Part VI)
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Trivial lower bound

Equivalent to Martello and Toth’s LB1.

Dual constraints are: m∑
i=1

aijπi ≤ 1,∀j ∈ J .

Dual solution πi =wi /W ,∀i , is a feasible dual solution, because

m∑
i=1

aijwi ≤W

aij ≥ 0 and integer, ∀j ∈ J .

The objective function value of this feasible dual solution is
m∑

i=1
biwi /W .
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Farley’s lower bound (Farley’1992) - I

At any iteration: the current dual solution, π, divided by the value of the
optimum of subproblem is a dual feasible solution.

"Most attractive" column Amin has minimum reduced cost:

cmin = 1−πAmin =min
j∈J

(1−πAj).

1−πAmin ≤ 1−πAj ,∀j ∈ J ,

πAj ≤πAmin,∀j ∈ J ,

(π/πAmin)Aj ≤ 1,∀j ∈ J .
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Farley’s lower bound (Farley’1992) - II

So, (π/πAmin) is a feasible solution to the dual of the CSP.

The objective function value of this feasible dual solution, (π/πAmin)b, is
a lower bound.

For practical purposes, at each iteration of the column generation
process, calculate it as follows:

divide πb by πAmin.

πb : value of the optimal current primal solution.
πAmin : the optimal value of the knapsack subproblem.

Easy to calculate, can be updated at each iteration.
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Lagrangean lower bound

Lagrangean function of the LP relaxation of CSP is:

∑
j∈J

xj +
m∑

i=1
πi (bi −

∑
j∈J

aijxj)

m∑
i=1

πibi +
∑
j∈J

(1−
m∑

i=1
πiaij)xj

πb+∑
j∈J

c jxj .

c j = 1−∑m
i=1πiaij : reduced cost of variable xj

Let K be an upper bound on ∑
j∈J xj .
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Lagrangean lower bound (cont.)
As xj ≥ 0 and c j ≥ cmin,∀j ∈ J :

πb+∑
j∈J

c jxj ≥πb+cmin
∑
j∈J

xj .

As 0≤∑
j∈J xj ≤K and cmin ≤ 0 :

πb+∑
j∈J

c jxj ≥πb+cminK .

From lagrangean duality,

zLP ≥min
x≥0

πb+∑
j∈J

c jxj .

Hence,
πb+cminK ≤ zLP .

Leftmost term of this relation is called the lagrangean bound.
Substituting the optimal value of the linear relaxation of CSP, zLP , for K
(actually, zLP is equal to the optimal value of ∑

j∈J xj), we obtain a
bound equal to Farley’s bound: πb/(1−cmin)≤ zLP .

© J.M. Valério de Carvalho, UMinho Decomposition Methods for Integer Programming 338



Lasdon bound

Problem with |K | convexity constraints.

minz = ∑
i ,j
cijxij (15)

subj. to
∑
i ,j
aijxij = b0 (16)∑

j
xij = 1, i = 1,2, . . . ,K (17)

xj ≥ 0, ∀i , j (18)

π0 : dual variable of constraint (16).
πi , i = 1,2, . . . ,K : dual variables of constraints (17).
(15) - π0 (16) - πi (17)

z −π0b0 −
∑
i
πi =

∑
i ,j
xij(cij −π0aij −πi )
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Lasdon bound (cont.)

c ij = cij −π0aij −πi : reduced cost of variable xij , which is attractive
when c ij < 0 (minimization problem).
Solving the |K | subproblems, we obtain minc ij for each i .

z −π0b0 −
∑
i
πi ≥

∑
i ,j
xij(min

j
c ij)

z −π0b0 −
∑
i
πi ≥

∑
i

(min
j

c ij)
∑
j
xij

z ≥π0b0 +
∑
i
πi +

∑
i

(min
j

c ij)

Sum of first two terms on the right side is the value of dual solution of
the current restricted master problem zB .

z ≥ zB +∑
i

(min
j

c ij)

At the optimum solution, c ij ≥ 0, ∀i
Bound can be computed with little computational effort.
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Outline

Heuristics
Quality of models and quality of heuristics
Rounding heuristics: cutting stock problem
Local search based on column generation
Application: binary multicommodity flows
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Quality of models and quality of heuristics

Heuristics based on stronger models generally provide better results than
heuristics based on weak models.
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General drawbacks of heuristics and meta-heuristics

lack of a measure of the quality of the solution obtained
lack of a well defined stopping criterion.
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Rounding LP solution heuristic

Round up fractional values of LP relaxation optimum to obtain
integer solution.
Value of heuristic solution zH : zH ≤ zLP +m, where zLP is the
optimum value of the LP relaxation.
As the values of the demands are generally high, the integer solution
is of good quality.

[Gilmore,Gomory’61]
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Rounding heuristic (example)

cutting patterns
W = 8 x1 x2 x3 x4 x5 x6

Demand bi

wi = 4 2 1 1 ≥ 5
3 1 2 1 ≥ 4
2 2 1 2 4 ≥ 8

min 1 1 1 1 1 1

Optimal fractional solution
2.5 2.0 1.5 6 rolls

Fractional solution rounded up
3.0 2.0 2.0 7 rolls

Excess production: + 1 item of 4 and 2 items of 2.
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Heuristics based on column generation

Waescher, Gau’96:
Pick solution of Gilmore-Gomory model.
Fix fractional optimal values (several rules to round up or down),
thus satisfying an integer part of the demand.
(remaining unsatisfied demand is a CSP instance with integer
demands, called the residual problem).
Use exact bin packing algorithm to solve residual problem when only
few items are left unsatisfied;
otherwise, use heuristics (FFD and BFD).
Build solution for the original problem combining the patterns that
were fixed with the solution of the residual problem.

Extensive computational experiments with instances with average
demands of 10 and 50: optimal solutions were found in almost all cases.
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Heuristics based on column generation (cont.)

Bin packing problem: small demanded quantities: demands close to
one or even equal to one.
Optimal LP relaxation variables are often a fraction of unity, and
residual problem may be almost as large as original problem.
It may not be so easy for heuristics to find good solutions for the
residual problems.

Other heuristics:
BISON: Scholl,Klein,Juergens’97.
Alvim,Glover,Ribeiro,Aloise’04
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General heuristic based in column generation

Pick solution of linear programming relaxation.
Use the column generated at the root node,
to get an integer solution with an LP software package.
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Beam Search

when exhaustive search in branch-and-bound tree is too heavy,
explore only a (very) limited number of children of each node.
Beam width: number of nodes allowed at any level of the
breadth-first search tree.
use breadth first search: all the nodes are evaluated at each level
before going any deeper in the search tree.
use an evaluation function to kill a node or to decide how many
children it will generate.

P. Ow, T. Morton, "Filtered beam search in scheduling", International
Journal of Production Research, 26, 35-62, 1988.

Beam search-and-price: combine beam search and price at each node for
attractive columns.
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Combining Meta-heuristics and column generation

hybrid approach applied to vehicle routing, where the master
problem is a set partitioning problem.
meta-heuristics exclusively based on local search.
applied in the nodes of the branch-and-price tree for improving the
incumbent solution and generating new columns.

E. Danna and C. L. Pape, "Branch-and-Price Heuristics: A Case Study
on the Vehicle Routing Problem with Time Windows". In G. Desaulniers,
J. Descrosiers, M.M. Solomon (eds.) Column Generation. Springer
Science and Business Media, New York, Ch. 4., 2005.
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Combining Meta-heuristics and exact methods

Other references
I. Dumitrescu and T. Stützle, "A survey of methods that combine
local search and exact algorithms". In G. R. Raidl, S. Cagnoni, J. J.
R. Cardalda, D. Corne, J. Gottlieb, A. Guillot, E. Hart, C. G.
Johnson, E. Marchiori, J.-A. Meyer, M. Middendorf (Eds.).
"Applications of Evolutionary Computation", Lecture Notes in
Computer Science 2611, Springer, pages 211-223, 2003.
Puchinger, J. and G. R. Raidl, "Combining metaheuristics and exact
algorithms in combinatorial optimization: a survey and
classification". In J. Mira and J. R. Álvarez (Eds.), Lecture Notes in
Computer Science 3562, Springer, pages 41-53, 2005.
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Concluding remark

in industrial applications, when there are time limits, heuristics based
on column generation may be very competitive.
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