
A variable neighborhood search algorithm for the leather
nesting problem

Cláudio Alves∗, Pedro Brás, José Valério de Carvalho, Telmo Pinto

Centro de Investigação Algoritmi da Universidade do Minho,

Escola de Engenharia, Universidade do Minho, 4710-057 Braga, Portugal

{claudio,pedro.bras,vc,telmo}@dps.uminho.pt

October 2, 2011

Abstract

The leather nesting problem is a cutting and packing optimization problem that consists in finding
the best layout for a set of irregular pieces within a natural leather hide with an irregular surface and
contour. In this paper, we address a real application of this problem related to the production of car
seats in the automotive industry. The high quality requirements imposed on these products combined
with the heterogeneity of the leather hides make the problem very complex to solve in practice.

Very few results are reported in the literature for the leather nesting problem. Furthermore, the
majority of the approaches impose some additional constraints to the layouts related to the particular
application that is considered. In this paper, we propose a variable neighborhood search algorithm for
the general leather nesting problem. We describe a fast constructive heuristic that generates a feasible
layout guided by the information provided by inner-fit polygons, and we introduce new neighborhood
structures based on the sequence by which the pieces are placed on the hide and on the quality of
the fitness of the pieces in the current layout. To evaluate the performance of our approaches, we
conducted an extensive set of computational experiments on real instances. The results of these
experiments are reported at the end of the paper.

1 Introduction

The Leather Nesting Problem (LNP) is a two-dimensional cutting problem whose objective is to find the
best layout for a set of irregular pieces within the boundaries of an irregular surface which is a natural
leather hide. The hides are not only irregular in their contour. They may have holes and zones with
different quality levels. On another hand, the pieces are subject to quality requirements that restrict their
placement within the hides. They are divided into quality zones that specify the minimum quality of the
hide from which these parts of the pieces must be cut. Here, we consider a particular application of the
LNP in the automotive industry, and in particular in the production of car seats. This application has
influence namely on the characteristics of the pieces. For instance, the pieces found in this sector contrast
with the pieces of other applications whose complexity tend to be low like in the furniture industry. In
this paper, our conclusions and data are supported by the real case study of a multinational company
operating in the automotive sector.

∗Corresponding author. Tel.: +351 253 604765; fax: +351 253 604741.
E-mail address: claudio@dps.uminho.pt (C. Alves).

1

The LNP addressed in this paper shares most of the characteristics and requirements of other nesting
problems. Obviously, the pieces must be placed within the boundaries of the hides, and they should
not overlap. Except the quality constraints mentioned above, no other constraints apply to the layouts
like for example constraints on the directionality of the pieces. Since the hides have a limited area (in
opposition to the strips whose area may be considered virtually unlimited), the standard optimization
criterion that is considered when building the layouts is the total raw material usage. When multiple
hides are involved, we may consider additional criteria like the percentage of remaining space that is left
on the last hide [2]. The typology proposed in [15] classifies this LNP as a 2D-RCSP (two-dimensional
residual cutting stock problem). Because of all these characteristics, the problem is very challenging. At
the same time, the value of the hides and the potential for savings make this problem very relevant from
an economical point of view.

A first contribution for a similar LNP can be found in [9]. In this paper, Heistermann and Lengauer
describe a constructive heuristic that starts by selecting an empty region of the hide using a multi-criteria
quality function. A subset of pieces is then selected according to their geometry and to the geometry
of the selected region. These pieces are placed in this region in the positions that maximizes another
multi-criteria function used to evaluate how good each piece fits in a given position. The authors report
on computational results for real instances that show the competitiveness of their approach compared to
the results achieved by human nesters.

More recently, Alves et al. [2] proposed a set of constructive heuristics for the general LNP addressed
in this paper. Their approach combines different strategies for grouping the pieces, for selecting the next
piece to place on the hide, for selecting an empty region of the hide where the selected piece will be placed,
and for evaluating the different placement positions in this region. The authors use no-fit polygons to
ensure the feasibility of the layouts, and also to guide the different selection processes of their heuristic.
They report on a set of computational experiments on real instances that attest the performance of some
of the combinations of strategies described in their paper.

Heistermann and Lengauer [9] and Alves et al. [2] are the only authors to report on results for the same
general LNP as the one addressed in this paper. All the other contributions proposed in the literature
[6, 17, 11, 16] focus on variants of this LNP. In [6], Crispin et al. describe two genetic algorithms for a
LNP with directionality constraints. They consider an application on the shoe-making industry where
the rotations that can be applied to the pieces are restricted over the hide. In practice, these constraints
reduce the complexity of the problem.

In [16], Yuping and Caijun explore a variant of the LNP with no quality constraints. They describe
a solution approach based on genetic algorithms and simulated annealing, and report on computational
results with material usage of 70% achieved in one hour of computing time. Lee et al. [11] addressed
a similar LNP with no quality zones and multiple hides. Their algorithm consists in placing the pieces
sequentially on the hide, and in adjusting their placement through translations and rotations.

In this paper, we describe a variable neighborhood search (VNS) algorithm for the general LNP
described above. Our approach relies on a fast constructive heuristic used to generate the first layout
and to complete the partial layouts that might be generated during the local search procedure. It relies
also on different neighborhood structures that are explored through the general framework proposed by
Mladenovic and Hansen in [12]. Our neighborhood structures are based on the sequence by which the
pieces are placed on the hide, and on the quality of the fitness of these pieces in the current layout.
The goal is to improve quickly the incumbent solution by exploring neighboring solutions obtained by
removing or replacing the pieces with the worst fitness in a given part of the sequence. We explore
different strategies for removing and replacing the pieces with the worst fitness, and to generate the
rest of the sequence from this piece forward. These strategies define the moves in the corresponding
neighborhoods. The VNS framework is used to explore systematically the various neighborhoods and

2

to escape from the regions that contain a local optimum through randomization. In our algorithm, the
local search phase is performed on a single neighborhood space, which is the same as the one used in
the shaking phase. As a consequence, our algorithm corresponds to an implementation of the basic or
standard VNS. Extensive computational experiments are reported for real instances from our real case
study. The tests were performed with two objectives: to tune the algorithm so as to identify the best
set of parameters and evaluate the real impact of each neighborhood in the quality of the layouts, and
to evaluate the performance of the best approach on a large set of real instances.

To the best of our knowledge, no results have been reported in the literature concerning the application
of the VNS metaheuristic to the general LNP addressed in this paper. In fact, we are not aware of any
algorithm based on VNS for cutting and packing problems involving irregular shapes. Recent applications
of VNS to cutting and packing problems can be found in [3, 14, 1].

In [3], the authors describe a hybrid method for the strip packing problem combining the greedy
randomized adaptive search procedure (GRASP) with VNS. The problem consists in finding the best
packing for a set of rectangles within a 2-dimensional strip with (virtually) infinite length. Their objective
is to find the pattern with the minimum length. The authors describe an approach that embeds a VNS
algorithm in the post-processing phase of GRASP. The VNS metaheuristic is used to improve the packing
of the last rectangles that were placed in the constructive phase. Their neighborhood structures are based
on the permutations of these rectangles. They report on a set of computational experiments where their
method compares favorably with a simulated annealing algorithm proposed in the literature [10].

In [14], Parreño et al. describe a VNS algorithm for the container loading problem. The initial solution
is generated using a constructive heuristic proposed in [13]. This heuristic builds iteratively a valid layout
for the problem by choosing and placing a set of boxes into a so-called maximal space, i.e. the space where
the largest parallelepiped can be placed. The authors propose five different neighborhood structures for
the problem based on five types of movements involving the deletion of layers, the insertion of columns
and boxes and emptying a complete region of the container. In [14], their algorithm is compared with
other state-of-the-art approaches proposed in the literature on a set of 1500 benchmark instances. Their
approach outperforms these other algorithms for the set of instances that were considered.

In [1], the authors describe a VNS approach for different variants of the 2-dimensional cutting stock
problem with guillotine constraints. They propose a set of greedy heuristics for the problem, together
with three neighborhood structures and their corresponding local search procedures. These structures
rely on the representation of the solutions as a sequence of items, and on movements based on swapping
items and reversing sub-sequences of items. These neighborhood spaces are explored within a variable
neighborhood descent procedure. The authors report on computational experiments for real instances of
the furniture industry. The number of bins and corresponding waste decreased with their approach when
compared with the results achieved by the companies.

The paper is organized as follows. In Section 2, we describe the characteristics of the general LNP
addressed in this paper. In Section 3, we introduce the geometrical issues related to the problem and
the strategies used to overcome these issues. In Section 4, we describe the constructive heuristic used to
generate the initial solution and to complete the partial layouts within the local search phases. In Section
5, we describe the different components of our algorithm including the movements and the corresponding
neighborhood structures, and we describe how these components are integrated in our VNS algorithm.
In Section 6, we report on an extensive set of computational experiments conducted on real instances
from our real case study. Some final conclusions are drawn in Section 7.

3

2 The leather nesting problem

The LNP is a two-dimensional cutting stock problem that consists in finding the best way to cut a set
of irregular pieces from a natural leather hide. The hides and the pieces have both an irregular contour.
Furthermore, they may have holes and regions with different quality grades. For the hides, the holes (as
other defects) and the quality zones are a consequence of the nature of the product. On the contrary, a
quality zone in a piece defines a minimum quality requirement set by the client. It stipulates that the
corresponding part of the piece must be cut from a region of the hide that has at least this level of quality.

Figure 1 shows a leather hide with holes (in white) and different quality zones (in black, red, green
and blue). The regions in grey at the border of the hide are non-usable areas. They are not defects in
the strict sense of the word, but because their quality is too low, they are not used to produce any piece.
In our specific application, the quality zones are divided in four groups denoted by A, B, C and D. The
zones A correspond to the best quality regions of the hides. The quality decreases from A to D, with D
being the worst quality level. The zones D of the hides are typically used to cut the parts of the pieces
that are not visible in the car seats. In the forthcoming figures, we will depict the zones A, B, C and D
of the hides in black, red, green and blue, respectively. The holes will be represented in white.

Figure 1: Leather hide

The quality zones of the pieces are defined using a similar scheme with four different quality grades. In
our case, the pieces are the parts of a car seat. The quality zone of a piece can only be cut from a region
of the hide whose quality grade is similar or higher. For example, a zone C of a piece will be cut only
from a region A, B or C of a hide. Note that in the real application considered in this paper the pieces
may be highly irregular. They may have different concavities, and their area may differ significantly.

A feasible layout is an arrangement of the pieces on the hide such that the pieces are all placed within
the boundaries of the hide (its usable part) without overlapping with each other, and such that the
quality requirements of the pieces are fulfilled. Note that while the defects on the hides do not increase
the complexity of the problem compared to other nesting problems, the existence of quality zones really
do. A defect on the hide (including the holes) can be treated as a piece already placed on this region of
the hide. However, the same does not apply to the quality zones. While a quality zone of a hide cannot
overlap with some parts of the pieces, it may overlap with others as long as its corresponding quality

4

level is the same or better than the quality requirement of these parts of the pieces.
The most common criterion used to evaluate the quality of a layout is the total material usage. In

the automotive industry, other criteria are used to improve the efficiency of the cutting processes [2].
For instance, when a production order requires more than a single hide, an important issue is to ensure
that the total usable area that remains on the last hide after the final cutting operation is maximized.
Indeed, the parts of the last hide that are too small are discarded, while the others are used as an input
for subsequent orders. Hence, the criterion that applies when generating the layout for the last hide is
no more the material usage, but instead the total usable area of this hide. In this paper, we will focus
on the generation of efficient layouts on a single hide, and hence, we will use the maximization of the
material usage as the optimization criterion.

3 Geometric aspects of the problem

The hides, the pieces, and their quality zones, holes and defects are all represented using polygons. These
polygons are generated after a scanning process for the hides, and using a CAD system for the pieces
of the car seats. To improve the efficiency of our approach, we simplified first the representation of the
hides and pieces by generating approximations of the corresponding shapes using a procedure described
in [2]. The outer border of the hides are represented using an inner approximation obtained by removing
sequentially the vertices whose distance from its immediate predecessor is smaller than a given (small)
parameter. A vertex is removed only if the resulting polygon is in fact an inner approximation of the
original polygon. On the contrary, the holes and the quality zones of the hides are replaced by an outer
approximation using a similar scheme. All the polygons representing the pieces are replaced by outer
approximations using again a similar scheme. This procedure ensures that every layout that is feasible for
the approximated hide will remain feasible for the original hide. It is important to note that the number
of vertices of the resulting polygons are still much larger than the number of vertices of the polygons used
in [9]. The number of vertices used to represent the hides and the pieces decreased respectively to 300
and 80 for the instances used in our computational experiments. In [9], the number of vertices per hide
and per piece was respectively equal to 100 and 70 before their simplifications.

In our approach, we resorted to no-fit polygons (NFPs) to compute the relative position between two
pieces and between the pieces and the quality zones of the hide. To ensure that a piece is placed within
the boundaries of the hide, we used inner-fit polygons (IFPs). Both the no-fit and the inner-fit polygons
are computed using Minkowski sums [7, 4]. In the particular case of the LNP, testing whether a piece
is placed correctly on the hide is more complex than in other nesting problems because of the quality
zones. The quality zones of a hide cannot be treated as pieces already placed on its surface (just as its
holes and defects). Indeed, while some parts of the pieces will not be allowed to overlap with the zones
of the hide whose quality is lower, these parts will be allowed to overlap with other zones that meet the
corresponding quality requirements. Hence, any standard method used to avoid that two pieces overlap
must be adapted in the case of the LNP.

The no-fit and inner-fit polygons of two polygons A and B will be denoted by NFPA,B and IFPA,B ,
respectively. The outer border of a no-fit polygon NFPA,B is the path followed by a reference point of B
when B slides around A without ever overlapping with A but such that B is always in contact with A.
The inner-fit polygon IFPA,B is defined in a similar way except that the polygon B must always remain
inside A. The NFPs are used to know if two polygons overlap or not, while the IFPs are used to know if
a polygon is completely contained within another. Indeed, if the reference point of B is inside NFPA,B ,
then A and B overlaps. If it lies at the boundary of A, then B touches A without overlapping with it.
Finally, if the reference point of B is outside NFPA,B then A and B overlaps. Similarly, if the reference
point of B is inside IFPA,B , then B is completely inside A. If it is at the border of IFPA,B , then B remains

5

inside A and it touches its border.
The NFPs between all the pairs of pieces have to be computed, together will all the IFPs between

each piece and the usable area of the hide, and all the NFPs between each quality zone of the pieces
and the regions of the hide with a lower quality grade. The IFPs of a given piece and the hide and the
NFPs of this piece and the quality zones of the hide describe the set of feasible placement positions of the
piece inside the hide. Note that there can be more than one (unconnected) IFP describing the feasible
placement positions inside a hide. The constructive heuristic used in our algorithm takes advantage of
the information provided by these polygons.

4 Generating feasible layouts: a constructive heuristic

To generate feasible layouts, we use a constructive heuristic that follows the same steps as those described
in [2]. The approach can be divided as follows:

a) definition of groups of pieces,

b) selection of the next piece to place on the hide from a given group of pieces,

c) selection of a region of the hide where to place the piece, and

d) evaluation of the placement positions in this region and selection of one of these positions.

The steps b) to d) are repeated until no more pieces can be placed on the hide, or until there are no more
pieces available. The heuristic is used many times in the course of the algorithm, and hence it should
remain fast without however neglecting the quality of the layouts. The strategies used in the steps b) to
d) were chosen with this objective in mind.

Let m be the total number of different pieces and let bi, with i = 1, . . . ,m, denote the demand
associated to the piece i. The step a) consists in grouping the pieces according to a given criterion. Let
n be the number of groups, and let Gj denote the set of pieces that belong to the group j. For ease
of presentation, we will assume that a re-indexing of the pieces is applied after the pieces have been
assigned to a group. Hence, denoting by mj the total number of pieces in the group j, we will have
Gj = {1, 2, . . . ,mj}. The demand of the piece i in group j will be denoted by bji.

The pieces are assigned to the groups according to the value of their areas. A piece i is assigned to a
group j if its area Ai is such that

Ai ∈
[
min+

max−min

n
× (j − 1);min+

max−min

n
× j

)
,

with min and max representing respectively the area of the smallest piece and the area of the largest
piece, and n being the total number of groups that are allowed. Note that for j = n, the previous interval
is closed on the right. Group G1 corresponds to the pieces with the smallest areas. The areas of the
pieces increase with the index of the groups, and hence, the pieces with the largest values belong to the
nth group Gn.

In the step b) of the heuristic, we start by choosing the group of pieces from which the next piece will
be selected. The groups are chosen by decreasing order of their index. We select the first group that has
pieces to be placed and such that at least one of these pieces still fits on the hide. The selection of the
next piece and its rotation is based on the index of the chosen group and on the characteristics of the
IFPs of the pieces and the hide. Let j be the index of the chosen group. If j < n

2 , we choose the piece
with the smallest IFP, while if j ≥ n

2 , the piece that is selected is the one that has the largest IFP. The
reference point of the selected piece is then placed within the IFP that determined the selection of the
piece.

6

The principle is to use the information provided by the IFPs as an indicator of the expectable quality
of the fitness of the pieces in the corresponding regions of the hide. We recall that there can be more
than one IFP representing the feasible placement positions of a given piece inside the hide. If one of the
IFPs of a small piece is a polygon with a small area, then one may expect that the fitness of this piece in
the corresponding region of the hide will be good. For the largest pieces, the objective is to place them
in regions where the impact on the placement of the next pieces is lower.

Once a piece and a placement region have been selected, we choose the final placement position of
the piece within this region. We use a simple criterion to evaluate each placement position. The position
that is selected is the point in the border of the IFP that is nearer from the border of the hide. Here, the
goal is to fill the hide preferentially from the border to the center.

5 A variable neighborhood search algorithm

5.1 Overview

The VNS framework was introduced by Mladenovic and Hansen [12] and applied successfully to many
optimization problems (see [8] for a recent survey). This framework leads to a metaheuristic that drives
the search into different neighborhoods in a systematic way so as to improve the incumbent solution.
In this paper, we use this framework to explore alternative neighborhoods for the general LNP. Our
approach relies on the constructive heuristic introduced above and on a set of neighborhoods that are
briefly described below. The details of the neighborhood structures will be given in the next section.

The initial layout is obtained by applying the constructive heuristic defined above. This heuristic
determines the sequence by which the pieces are placed and the exact position of each piece on the hide.
A layout is defined by the set of pieces that are placed on the hide together with their rotation and
position. As an alternative, we can represent a layout as a sequence of pieces combined with the iterative
application of the steps c) and d) of our constructive heuristic. By iterative, we mean that the pieces are
chosen and placed on the hide one after the other following the order defined by the sequence, and that
the process repeats until there are no more pieces in the sequence. We will use this latter representation
to describe our neighborhood structures and associated movements.

We propose four types of distinct movements defined from a sequence of pieces: exchanging a piece p

by another that is not in the sequence, removing all the pieces from this piece forward and filling the hide
using the constructive heuristic; exchanging a piece p by another that is not in the sequence, keeping the
rest of the sequence unchanged, placing the corresponding pieces using iteratively the steps c) and d) of
the constructive heuristic, and filling the rest of the hide by applying the complete heuristic; swapping
two pieces p and p′ in the sequence if p′ can be placed on the hide with a better fitness than p following
the steps c) and d) of the heuristic, placing all the pieces of the sequence using the steps c) and d) of the
heuristic, and filling the rest of the hide with the complete heuristic; removing a piece p of the sequence,
placing all the pieces of the resulting sequence by applying iteratively the steps c) and d) of the heuristic,
and filling the rest of the hide with the complete heuristic.

The piece p that is exchanged, swapped with another piece or removed from the sequence is chosen
from a set of candidate pieces with the worst fitness. The quality of the fitness of a piece is evaluated
by computing the areas of the polygons resulting from the intersection of an offset of the piece with the
outer part of the hide and with the current layout, and by dividing this total area by the area of the
offset. The largest will be this value, the better will be the fitness. Ideally, when this value is equal to 1,
all the border of the piece touches the border of the hide or the border of the current layout. Figure 2
illustrates the process.

For ease of presentation, we will always denote in this paper the piece that is to be exchanged, swapped

7

Figure 2: Evaluating the quality of the fitness of a piece at a given placement position

with another piece or removed from the sequence by p, and the set of candidate pieces from which p is
selected by P . Similarly, the set of pieces that are candidate to substitute p in the sequence will be
denoted by P ′, and the piece that is selected from P ′ by p′. Furthermore, we will denote by S a sequence
of pieces, and we will define it as a vector of tuples as follows:

S = (s1, s2, . . . , s|S|),

with sk = (j, i) denoting the group (Gj) and the piece (i ∈ Gj) that is in the kth position in the sequence.
The vector containing the values of the corresponding fitness of these pieces will be denoted by F and
defined as follows:

F = (f1, f2, . . . , f|S|),

with 0 ≤ fk ≤ 1, k = 1, . . . , |S|.
A key characteristic of our approach is that the neighbors of a solution L (except eventually the one

defined through the fourth type of movement described above) are layouts in which the fitness of the
piece p′ is always better than the fitness of the piece p in L. Furthermore, the pieces p will not be chosen
from any part of the sequence, but from a restricted subpart of the sequence. These subparts will be
defined based on the position of the pieces in the sequence. However, instead of using the indexes k of
the tuples sk in S to denote these positions, we use the percentage of material usage achieved right after
a piece is placed on the hide. For example, we will choose the pieces that are in a window of 50% to 70%
of material usage meaning that only the pieces that lead to a material usage in this interval right after
being placed on the hide will be chosen. We will denote by U the vector of values of the material usage
achieved after placing each piece of the sequence S. We will have

U = (u1, u2, . . . , u|S|),

with uk < uk+1, k = 1, . . . , |S|−1. The vector U will represent the evolution of the material usage as the
pieces are placed on the hide. To identify a subpart of the sequence, we will use a lower and an upper
bound for the value of the material usage. We will denote these values by umin and umax, respectively.
For the example given above, we have umin = 50% and umax = 70%.

Specific neighborhoods are defined from the general movements referred to above. The neighborhoods
further depend on the following set of parameters:

8

• the number of pieces that are candidate to be exchanged, swapped with another piece or removed,
i.e. |P | (we will denote this parameter by q);

• the number of pieces that are candidate to substitute the piece p, i.e. |P ′| (we will denote this
parameter by r);

• the subpart of the sequence from which the pieces of P are chosen, i.e. (si, . . . , sj) with

i = argminl∈{1,...,|S|}{ul : ul ≥ umin, ul ∈ U},

and

j = argmaxl∈{1,...,|S|}{ul : ul ≤ umax, ul ∈ U}.

Note that, when q = 1, the piece that is exchanged, swapped or removed is the piece with the worst
fitness in the given subsequence. Similarly, when r = 1, the piece p is replaced in the sequence by the
piece that leads to the best fitness, either from the sequence S or not. It is possible to define various
neighborhoods by setting these parameters to different values. The details of these neighborhoods will
be given in the next section.

To explore these neighborhoods, we use the standard VNS framework. At each iteration, the procedure
tries to improve the incumbent by looking to local optima within each neighborhood. Driving the search
to a different neighborhood may improve the solutions obtained through the exploration of the previous
neighborhoods since the local optima in two different neighborhoods are not necessarily the same. In this
paper, we propose an approach based on VNS that explores systematically the neighborhoods obtained
through the general movements described above and by setting the above parameters to some specific
values.

5.2 Movements and neighborhood structures

We begin by describing in detail the procedures that define each one of the four movements referred to
above. These movements will be denoted by M1, M2, M3 and M4, respectively.

A. Movement M1

1. Select the piece p:

Let k1 = argminl∈{1,...,|S|}{ul : ul ≥ umin, ul ∈ U} and k2 = argmaxl∈{1,...,|S|}{ul : ul ≤
umax, ul ∈ U};
Let P be the set of the q pieces from the subsequence (sk1 , . . . , sk2) with the smallest
fitness in F ;

Choose a piece p from P ;

2. Select the piece p′:

Let C be the set of pieces that are not in the sequence S;

Let P ′ be the set of the r pieces of C with the best fitness when placed on the hide right
after sk1−1 following the steps c) and d) of the heuristic;

Choose a piece p′ from P ′;

3. Update the sequence S:

Let Gj be the group of the piece p and i the index of p in Gj , and let k3 be the index of
(j, i) in S corresponding to the chosen piece p;

9

Let Gj′ be the group of the piece p′ and i′ the index of p′ in Gj′ ;

Remove the subsequence (sk3
, . . . , s|S|) from S;

4. Place the pieces of the sequence (s1, . . . , sk3−1, (j
′, i′)) on the hide following the steps c) and

d) of the constructive heuristic (if a piece of the sequence cannot be placed on the hide, update
S by removing this piece from the sequence);

5. Fill the hide (and complete the sequence S) using the constructive heuristic.

Note that if k3 = 1, then the subsequence (s1, . . . , sk3−1) is an empty vector.
The movement M2 differs from M1 only on the steps 3 and 4. As happens in M1, the piece p is

replaced in the current sequence S by another (p′) with a better fitness and that is not in S, while the
rest of the sequence from p forward remains unchanged. The pieces of the new sequence are placed on
the hide using the steps c) and d) of the constructive heuristic. When all these pieces have been placed
(or discarded eventually if they do not fit on the hide), the complete heuristic is used (eventually) to fill
the empty spaces that may remain.

B. Movement M2

1. Select the piece p: similar to step 1. of M1;

2. Select the piece p′: similar to step 2. of M1;

3. Update the sequence S:

Let Gj be the group of the piece p and i the index of p in Gj , and let k3 be the index of
(j, i) in S corresponding to the chosen piece p;

Let Gj′ be the group of the piece p′ and i′ the index of p′ in Gj′ ;

Replace (j, i) in the position k3 of the sequence by (j′, i′), i.e.

S = (s1, . . . , sk3−1, (j
′, i′), sk3+1, . . . , s|S|);

4. Place the pieces of the new sequence S on the hide following the steps c) and d) of the
constructive heuristic (if a piece of the sequence cannot be placed on the hide, update S by
removing this piece from the sequence);

5. Fill the hide (and complete the sequence S) using the constructive heuristic.

In the movement M3, the piece p′ is selected from the subsequence of S starting from p and up to the
end of the sequence. The pieces p and p′ are swapped in the sequence S, and the pieces of the resulting
sequence are placed using the steps c) and d) of the heuristic. Again, the constructive heuristic is used
at the end of the process to fill the empty spaces.

C. Movement M3

1. Select the piece p: similar to step 1. of M1;

2. Select the piece p′:

Let P ′ be the set of the r pieces of S from the chosen piece p up to the end of S with the
best fitness when placed on the hide right after sk1−1 following the steps c) and d) of the
heuristic;

Choose a piece p′ from P ′;

3. Update the sequence S:

10

Let Gj be the group of the piece p and i the index of p in Gj , and let k3 be the index of
(j, i) in S corresponding to the chosen piece p;

Let Gj′ be the group of the piece p′ and i′ the index of p′ in Gj′ , and let k4 be the index
of (j′, i′) in S corresponding to the chosen piece p′;

Swap sk3
and sk4

in S, i.e.

S = (s1, . . . , sk3−1, sk4
, sk3+1, . . . , sk4−1, sk3

, sk4+1, s|S|);

4. Place the pieces of the new sequence S on the hide following the steps c) and d) of the
constructive heuristic (if a piece of the sequence cannot be placed on the hide, update S by
removing this piece from the sequence);

5. Fill the hide (and complete the sequence S) using the constructive heuristic.

Here, we assume that k3 < |S|, otherwise it is clear that p′ will not exist.
The fourth movement consists in removing the piece p from the sequence S and placing the remaining

pieces from this piece forward using the constructive heuristic.

D. Movement M4

1. Select the piece p: similar to step 1. of M1;

2. Update the sequence S:

Let Gj be the group of the piece p and i the index of p in Gj , and let k3 be the index of
(j, i) in S corresponding to the chosen piece p;

Remove sk3
from S, i.e. S = (s1, . . . , sk3−1, sk3+1, . . . , s|S|);

3. Place the pieces of the new sequence S on the hide following the steps c) and d) of the
constructive heuristic (if a piece of the sequence cannot be placed on the hide, update S by
removing this piece from the sequence);

4. Fill the hide (and complete the sequence S) using the constructive heuristic.

The objective of these movements is to explore different neighborhoods of the current solution L that
are all composed by solutions obtained from L by removing one of its pieces with a bad fitness, and
replacing it (eventually) by another piece with a better fitness. They differ essentially from each other
on the way the piece p is treated. Note that while in M1, M2 and M3, the piece p is replaced by another
that leads to a better fitness (by definition), there is no guarantee that the piece sk3+1 in M4 will improve
the fitness of the piece p.

The movement M1 is the most computationally expensive among the four movements, since it forces
to repeat the complete heuristic right after p has been exchanged. In the other movements, the step b)

of the heuristic consisting in the selection of the next piece to place is not applied, while the pieces of
the new sequence S are being placed. The heuristic is applied in its entirety only after all these pieces
have been placed on the hide. Typically, the number of iterations at this stage is small. The movements
M2 and M3 vary essentially on the source from which p′ is selected, either from the sequence or not. The
movement M4 is the simplest movement. The neighborhoods of a solution L defined through M4 are
composed by |P | solutions. This movement is proposed as a fast strategy that aims at removing a piece
with a bad fitness, letting the heuristic complete the layout starting from its immediate successor sk3+1

in S.
Each movement will be associated to a specific neighborhood. We will denote the neighborhoods of

a solution L obtained through Mi by Ni(L), i = 1, . . . , 4. The neighborhoods N1(L), N2(L) and N3(L)

11

of a solution L consists in the solutions generated by taking every pieces p ∈ P , and for each one these
pieces by replacing (or swapping) it by every pieces p′ ∈ P ′, and then by applying the steps 3 to 5 of
M1, M2 and M3, respectively. The neighborhood N4(L) of a solution L is composed by all the solutions
obtained from L by removing each one of the pieces of P , and by applying the steps 2 to 4 of M4. These
neighborhoods depend on different parameters, namely umin and umax that determine the subpart of the
sequence from which the pieces of P are selected, and the parameters q and r that determine the size of
the sets P and P ′, respectively. Specific neighborhoods can be obtained from these general definitions
by setting these parameters to given values. To explore in a systematic way the neighborhoods induced
by these general definitions, we developed an algorithm based on the VNS framework described in [12].
The details of this approach are given in the following section.

5.3 Variable neighborhood search

The VNS metaheuristic defines a general framework for optimization based on the systematic exploration
of different neighborhoods. It is a local search metaheuristic that allows to escape from local optima by
switching among the neighborhoods. It relies on the simple observation that a local optimum in a given
neighborhood may not remain optimal in another neighborhood. Different variants are defined from this
general framework, such as the variable neighborhood descent algorithm and the variable neighborhood
decomposition search procedure. In [8], Hansen et al. reviewed different possible implementations of the
VNS metaheuristic. These schemes are general enough to allow for different practical implementations.
In this paper, we describe an implementation of the VNS metaheuristic based on the basic approach.
To improve the efficiency of our approach, we adapted some components of the basic scheme, essentially
in the local search phase. A computational study was performed to tune the resulting algorithm, to
identify promising sets of parameters and to evaluate the impact of each neighborhood in the quality of
the solutions. The results of this study are provided in Section 6.

Let v(x) denote the value of a solution x. The general steps of the basic VNS are described below for
a minimization problem.

Input:

tmax neighborhood structures Nt, t = 1, . . . , tmax;

A stopping criterion;

1. Initialization:

x := findInitialSolution();

2. Repeat the following steps until the stopping criterion is met:

a. t := 1;

b. Repeat the following steps until t = tmax:

x′ := shaking(x, t);

x′′ := localSearch(x′, t);

if v(x′′) < v(x) then

x := x′′;

t := 1;

else

t := t+ 1;

12

The output of this algorithm is the incumbent solution x. The procedure findInitialSolution generates
an initial solution for the problem which becomes also the first incumbent solution. At each iteration, a
solution is generated randomly from the tth neighborhood of x through the shaking procedure. A local
optimum is then sought in this tth neighborhood space through the local search procedure localSearch.
If the value of this local optimum is better than the value of the incumbent solution, the incumbent
is updated and the search is resumed starting from the first neighborhood structure and with this new
incumbent. If it is worse or equal than the value of the incumbent solution, the local search procedure is
then applied on the neighborhood Nt+1. The process repeats until the stopping criterion is finally met.
Note that this general definition allows for different implementations. For instance, the strategy used to
switch between two neighborhood structures may be different from the sequential scheme followed in the
basic VNS described above. Similarly, the criterion used to accept a local optimum, and move to the
corresponding solution may not be based (only) on the value of this local optimum.

Our implementation of the basic VNS for the general LNP is described next. The neighborhood
structures Ni refer to the structures introduced in the previous section. Furthermore, we denote by
(uj

min,i, u
j
max,i) the jth pair of lower and upper bounds (umin, umax) for the value of the material usage

associated to the neighborhood Ni, which define the subpart of the sequence from which the pieces of P
are selected. The parameters qji and rji will be used to denote the general parameters q and r introduced
in Section 5.1 and associated to the jth neighborhood defined from Ni. For each Ni, i = 1, . . . , 4, let
tNi

denote the number of parameter sets that are considered, each one consisting on given values for
the parameters (uj

min,i, u
j
max,i), q

j
i and rji , j = 1, . . . , tNi

. Each one of these parameter sets define a
specific neighborhood structure within one of the general neighborhoods Ni, i = 1, . . . , 4 (whose precise
definition depends on this set of parameters). In practice,

∑4
i=1 tNi

neighborhood structures are effectively
considered in our algorithm. Let tmax =

∑4
i=1 tNi . For the sake of clarity, in our description of our

VNS algorithm given below, we will index these neighborhoods sequentially using an index t such that
t = 1, . . . , tmax.

Input:

For each Ni, i = 1, . . . , 4, tNi
sets of parameters (uj

min,i, u
j
max,i), q

j
i and rji , j = 1, . . . , tNi

,
such that tmax =

∑4
i=1 tNi (the resulting neighborhood structures will be indexed with the

index t, with t = 1, . . . , tmax);

A limit tlimit on the total computing time;

1. Initialization:

L := findInitialSolution();

2. Repeat the following steps until cpuTime() ≥ tlimit:

a. t := 1;

b. Repeat the following steps until t = tmax:

L′ := shaking(L, t);

L′′ := firstImprovement(L′, t);

if v(L′′) < v(L) then

L := L′′;

t := 1;

else

t := t+ 1;

13

The initial layout L is generated using the constructive heuristic described in Section 4. The neigh-
borhood structures used in the shaking phase and in the local search procedure are the same. In our
implementation, we used a first improvement local search procedure. To further accelerate this proce-
dure, we restrict the search to a subpart of the neighborhood of the solution L′. Indeed, whenever q

(the size of the set P of pieces to exchange, swap with another or remove) is greater than 1, we explore
only the neighbors obtained by choosing randomly one piece p of P , and by taking all the pieces p′ of
P ′ in the case of N1, N2 and N3. Note that to generate a neighboring solution, we have to use the
constructive heuristic. The heuristic is computationally expensive namely because of the computation of
the NFPs and IFPs, even if, in practice, the heuristic is applied only on the subpart of the sequence that
was changed, since the head of the sequence that was kept unchanged produces exactly the same partial
layout. Finally, the execution of the algorithm is stopped after a given time limit has been reached.

6 Computational experiments

Two sets of experiments were conducted: one to compare possible strategies for our VNS algorithm and
to tune the parameters of the algorithm, and another to evaluate the performance of the best approach
that emerged from the tuning experiments on a large set of real instances. In this section, we report on
the results of these experiments. The instances (the hides and the pieces) came from the company that
is used as a case study in this paper, and in particular from two car models whose seats are produced by
this company. We used the data corresponding to one of the seats for each car model. The total number
of different pieces of the first car model was equal to 23, while 22 different pieces were used for the second
car model. The pieces can be rotated, but since each rotation implies the computation of a new set of
NFPs and IFPs, we restricted the rotations to multiples of 45 degrees.

The experiments were conducted on a PC with an Intel Core i3 CPU with 2.27 GHz and 4GB of
RAM. The algorithms were coded in C++, and the computational geometry routines were implemented
using CGAL 3.7 (Computational Geometry Algorithms Library).

6.1 Tuning the VNS algorithm

The tuning experiments focus on the different aspects and parameters of our VNS algorithm. The
objective of these experiments are summarized next:

a) evaluate the impact of each neighborhood on the quality of the layouts that are generated;

b) compare different strategies for setting the intervals of material usage (uj
min,i, u

j
max,i) from which

the pieces of P are selected;

c) evaluate alternative values for the parameters qji , i.e. the size of the sets P from which are selected
the pieces that are exchanged, swapped with another or removed;

d) evaluate alternative values for the parameters rji , i.e. the size of the set P ′ of pieces that will be
inserted in the sequence;

e) compare the quality of the layout when the neighborhoods are explored by different orders.

For this purpose, we used 24 instances from the two car models referred to above. From the first
car model, we generated 4 production orders with different subsets of pieces from the global set of 23
pieces. The number m of different pieces for each order was respectively equal to 8, 12, 15 and 23. The
demand for each piece was set equal to 100. For each order, we repeated the algorithm on 3 different
leather hides. In practice, that led to 12 different instances of the LNP. From the second car model,

14

we generated 12 different orders in the same way. The number of different pieces varied from 5 to 22
(m ∈ {5, 7, 8, 9, 12, 14, 20, 22}). Again, the demand for each piece was equal to 100. We used the same
hide for each production order. In all the cases, the production orders were larger than the hide. The
pieces of the production orders filled completely the hide, and there were always pieces that remained to
be cut. Our goal was to evaluate the capacity of the VNS algorithm to find good quality layouts, i.e.
with a high material usage on each single hide. The limit on the total computing time was set to 600s. In
the company, the pieces of a production order are placed on the hide by two operators. The average time
used by these human nesters is typically around 600s. In the subsequent tables, the instances related to
the first car model are identified by the index of the corresponding production order x and the index y

of the hide as follows x; y. The instances associated to the second car model are identified by the index
of the corresponding production order. The column Inst. in these tables identifies the problem instance.

In Table 1, we give the results obtained when different neighborhood structures are used in the VNS
algorithm. The objective is to evaluate whether the best layouts tend to be found by exploring a particular
neighborhood, or if all the neighborhoods contribute in the same way to the quality of the final layouts.
Nine strategies were explored: using all the neighborhood structures Ni with tNi

= 2, q1i = 1 and q2i = 3,
i = 1, . . . , 4; using the neighborhood structure N1 with tN1

= 1 and q11 = 1 (that consists in exchanging,
swapping or removing the piece with the worst fitness within a given interval defined by the parameters
u1
min,1 and u1

max,1), and similarly using only one of the neighborhoods N1 with q11 = 3, N2 with q12 = 1,
N2 with q12 = 3, N3 with q13 = 1 or N3 with q13 = 3, N4 with q14 = 1 or N4 with q14 = 3. For all the cases
except the first, we assume that tNi

= 1, i = 1, . . . , 4, i.e. only one specific neighborhood structure was
used for each one of these cases. In all these configurations, the other parameters of the neighborhoods
were set as follows: rji = 3 and (uj

min,i, u
j
max,i) = (10%, 0.95 ×MU%), j = 1, . . . , tNi

, i = 1, . . . , 4, with
MU being the percentage of material usage achieved in the initial layout. In the case where all the
neighborhoods were used, we explored them by increasing value of their indexes. Note that we considered
explicitly the neighborhood structures Ni with qji = 1, i = 1, . . . , 4, because we observed that the best
results were usually obtained when this neighborhood is included in the search.

The tests were repeated three times for each instance and configuration. A total of 648 runs were
performed (4.5 days of total computing time). In Table 1, we indicate the number of times each configu-
ration provided the best layouts for the corresponding instance. These results show that the best layouts
are more often generated when all the neighborhoods are used. Indeed, 30 of the 72 best layouts are
found with this configuration, while the second best strategy (N1 with q11 = 3) reaches the best layout
only in 9 cases.

The best strategy identified at some step of our tuning experiments are always used in the following
tests. For instance, the strategy that consists in using all the neighborhoods were used in the next
experiments.

The second set of tuning experiments was conducted to compare some alternative strategies for setting
the values of the lower and upper bounds (uj

min,i, u
j
max,i) on the material usage that are used to define

the subsequences from which the pieces of P are selected. We analyzed five strategies. Broadly speaking,
we analyzed whether the best results are achieved by using a single or more than one interval for each
general neighborhood structure Ni, i = 1, . . . , 4, and we tried to identify where this interval should be
located. The parameters that characterize the five approaches are given next:

1. tNi
= 2, i = 1, . . . , 4:

q1i = 1, r1i = 3, (u1
min,i, u

1
max,i) = (50%, 0.95×MU%);

q2i = 3, r2i = 3, (u2
min,i, u

2
max,i) = (50%, 0.95×MU%);

15

CAR MODEL 1 CAR MODEL 2
Neighborhood Neighborhood

Inst.All
N1 N1 N2 N2 N3 N3 N4 N4 Inst.All

N1 N1 N2 N2 N3 N3 N4 N4

q11 = 1q11 = 3q12 = 1q12 = 3q13 = 1q13 = 3q14 = 1q14 = 3 q11 = 1q11 = 3q12 = 1q12 = 3q13 = 1q13 = 3q14 = 1q14 = 3

1;1 3 1 3
1;2 2 1 2 3
1;3 2 1 3 2 1
2;1 1 2 4 2 1
2;2 1 1 1 5 1 1 1
2;3 1 1 1 6 1 2
3;1 1 1 1 7 1 2
3;2 2 1 8 1 1 1
3;3 1 1 1 9 1 2
4;1 2 1 10 2 1
4;2 2 1 11 2 1
4;3 2 1 12 2 1
tot. 16 2 4 3 4 1 3 0 3 tot. 14 5 5 0 4 1 3 3 1

Table 1: Evaluating the impact of the neighborhood structures (number of times the best layout is found
with the corresponding strategy)

2. tNi
= 2, i = 1, . . . , 4:

q1i = 1, r1i = 3, (u1
min,i, u

1
max,i) = (10%, 50%);

q2i = 3, r2i = 3, (u2
min,i, u

2
max,i) = (10%, 50%);

3. tNi = 2, i = 1, . . . , 4:

q1i = 1, r1i = 3, (u1
min,i, u

1
max,i) = (10%, 0.95×MU%);

q2i = 3, r1i = 3, (u2
min,i, u

2
max,i) = (10%, 0.95×MU%);

4. tNi
= 4, i = 1, . . . , 4:

q1i = 1, r1i = 3, (u1
min,i, u

1
max,i) = (10%, 50%);

q2i = 1, r2i = 3, (u2
min,i, u

2
max,i) = (50%, 0.95×MU%);

q3i = 3, r3i = 3, (u3
min,i, u

3
max,i) = (10%, 50%);

q4i = 3, r4i = 3, (u4
min,i, u

4
max,i) = (50%, 0.95×MU%);

5. tNi
= 4, i = 1, . . . , 4:

q1i = 1, r1i = 3, (u1
min,i, u

1
max,i) = (25%, 50%);

q2i = 1, r2i = 3, (u2
min,i, u

2
max,i) = (50%, 0.95×MU%);

q3i = 3, r3i = 3, (u3
min,i, u

3
max,i) = (25%, 50%);

q4i = 3, r4i = 3, (u4
min,i, u

4
max,i) = (50%, 0.95×MU%).

The first strategy consists in using a single neighborhood for each general structure Ni, i = 1, . . . , 4,
and in selecting the pieces of the set P preferentially from the tail of the sequence, while in the second
strategy, the pieces of P are chosen from the other part of the sequence. The third strategy encompasses
both the two previous strategies. It consists in selecting the pieces of P from almost all the sequence
except its very beginning. In the fourth and fifth strategies, we explore the use of two neighborhoods

16

for each general neighborhood structure Ni, Ni, i = 1, . . . , 4, based on different intervals (uj
min,i, u

j
max,i).

The fourth strategy combines the intervals used in the first and second strategy. In the fifth strategy, we
try to explore neighborhoods where the head of the sequences are kept unchanged. Indeed, the pieces that
are at the head of the sequence are placed first and they lead usually to a good fitness when compared
to the other pieces of the sequence.

The tests were executed only once for each instance and configuration. A total of 120 runs were
performed (0.83 days of total computing time). The results of these experiments are given in Table 2.
Again, we report on the number of times that a given strategy led to the best solution for each instance.
For the first car model, the results are nearly the same for all the strategies, while for the second car
model, the second strategy clearly dominates the other. When the pieces of P are allowed to be selected
from the beginning part of the sequence (as happens in the second strategy), the layouts that are in the
neighborhood of the current solution L may be quite different from L, since a large part of the layout may
have to be rebuilt using the constructive heuristic if the piece p that is selected is at the very beginning
of the sequence. That allows to explore more diverse solutions, and thus it increases the possibilities of
finding a layout with an improved material usage.

CAR MODEL 1 CAR MODEL 2
Definition of (uj

min,i, u
j
max,i) Definition of (uj

min,i, u
j
max,i)

Inst. 1 2 3 4 5 Inst. 1 2 3 4 5
1;1 1 1 1
1;2 1 2 1
1;3 1 3 1
2;1 1 4 1
2;2 1 5 1
2;3 1 6 1
3;1 1 7 1
3;2 1 8 1
3;3 1 9 1
4;1 1 10 1
4;2 1 11 1
4;3 1 12 1
tot. 2 2 3 2 3 tot. 3 6 2 1 0

Table 2: Evaluating the impact of the parameters (uj
min,i, u

j
max,i) (number of times the best layout is

found with the corresponding strategy)

The third set of tuning experiments focus on the parameters qji of the neighborhood structures. The
corresponding results are reported in the Table 3. For each general neighborhood structure, we defined
two specific structures, i.e. tNi

= 2, i = 1, . . . , 4. The structures differ on the value of the parameter qji .
We used q1i = 1 and q2i = 3 in one case, and q1i = 1 and q2i = 5 in the other, for i = 1, . . . , 4. The parame-
ters r1i and r2i were set equal to 3, while the intervals (uj

min,i, u
j
max,i), j ∈ {1, 2}, were selected according

to the second strategy described above. In summary, we used two different values for the parameter q2i ,
namely q2i = 3 and q2i = 5, i = 1, . . . , 4. The objective was to analyze whether an increase on the value
of this parameter could lead to better layouts. The tests were repeated three times for each instance and
configuration. A total of 144 runs were performed (one day of computing time). We can observe from Ta-
ble 3 that the quality of layouts decrease as we increase the value of this parameter for both the car models.

17

CAR MODEL 1 CAR MODEL 2
Inst. q2i = 3 q2i = 5 Inst. q2i = 3 q2i = 5

1;1 1 2 1 2 1
1;2 1 2 2 1 2
1;3 2 1 3 1 2
2;1 0 3 4 2 1
2;2 2 1 5 2 1
2;3 3 0 6 1 2
3;1 3 0 7 3 0
3;2 1 2 8 2 1
3;3 3 0 9 2 1
4;1 1 2 10 1 2
4;2 3 0 11 2 1
4;3 2 1 12 2 1
tot. 22 14 tot. 21 15

Table 3: Evaluating the impact of the parameters qji (number of times the best layout is found with the
corresponding strategy)

To evaluate the impact of the rji parameter, we conducted different experiments using the neighbor-
hood structures corresponding to the following configurations:

1. tNi
= 2, i = 1, . . . , 4:

q1i = 1, r1i = 1, (u1
min,i, u

1
max,i) = (10%, 50%);

q2i = 3, r2i = 1, (u2
min,i, u

2
max,i) = (10%, 50%);

2. tNi = 2, i = 1, . . . , 4:

q1i = 1, r1i = 3, (u1
min,i, u

1
max,i) = (10%, 50%);

q2i = 3, r2i = 3, (u2
min,i, u

2
max,i) = (10%, 50%);

3. tNi
= 2, i = 1, . . . , 4:

q1i = 1, r1i = 5, (u1
min,i, u

1
max,i) = (10%, 50%);

q2i = 3, r2i = 5, (u2
min,i, u

2
max,i) = (10%, 50%);

The three configurations differ exclusively on the value of the rji parameters. Here, our objective was to
analyze the impact on the quality of the layouts when one increases or decreases the value of this param-
eter. The results are reported in Table 4. A total of 216 runs were performed (1.5 days of computing
time). From these experiments, we can conclude that the best layouts are achieved when rji = 3. The
quality of the solutions get worse whether we increase or decrease the value of this parameter for both
the car models used in the experiments. Increasing the value of the parameters rji increases the number
of neighboring solutions. However, from our experiments this larger variety of solutions does not reflect
into the quality of the final layouts.

Our last set of tuning experiments were conducted to evaluate the impact of the order by which the
neighborhoods are explored on the quality of the final layouts. For this purpose, we used the best set
of parameters identified in the previous experiments, and we tried 12 different sequences for the search,
namely

18

CAR MODEL 1 CAR MODEL 2
Inst. rji = 1 rji = 3 rji = 5 Inst. rji = 1 rji = 3 rji = 5

1;1 3 1 1 2
1;2 1 2 2 2 1
1;3 3 3 2 1
2;1 3 4 2 1
2;2 2 1 5 2 1
2;3 3 6 1 2
3;1 3 7 3
3;2 1 2 8 1 2
3;3 3 9 3
4;1 3 10 2 1
4;2 2 1 11 3
4;3 3 12 1 1 1
tot. 7 17 12 tot. 6 22 8

Table 4: Evaluating the impact of the parameters rji (number of times the best layout is found with the
corresponding strategy)

1. N1, N2, N3 and N4;

2. N2, N1, N3 and N4;

3. N1, N3, N2 and N4;

4. N2, N3, N1 and N4;

5. N3, N1, N2 and N4;

6. N3, N2, N1 and N4;

7. N4, N1, N2 and N3;

8. N4, N2, N1 and N3;

9. N4, N1, N3 and N2;

10. N4, N2, N3 and N1;

11. N4, N3, N1 and N2;

12. N4, N3, N2 and N1.

The tests were performed only once for each instance and each configuration. A total of 288 runs
were performed (2 days of computing time). The results are reported in Table 5. From these results,
we can observe that while some sequences never led to the best layouts (configuration 9 and 11), none
of the other sequences clearly dominated all the others. The best results are obtained with the first and
seventh sequences which generate both the best layout for four instances.

19

CAR MODEL 1 CAR MODEL 2
Order of the neighborhoods Order of the neighborhoods

Inst. 1 2 3 4 5 6 7 8 9 10 11 12 Inst. 1 2 3 4 5 6 7 8 9 10 11 12
1;1 1 1 1
1;2 1 2 1
1;3 1 3 1
2;1 1 4 1
2;2 1 5 1
2;3 1 6 1
3;1 1 7 1
3;2 1 8 1
3;3 1 9 1
4;1 1 10 1
4;2 1 11 1
4;3 1 12 1
tot. 1 1 1 1 3 1 3 1 0 0 0 0 tot. 3 0 2 2 0 1 1 0 0 2 0 1

Table 5: Evaluating the impact of the order by which the neighborhoods are explored (number of times
the best layout is found with the corresponding strategy)

6.2 Computational results

In this section, we report on the results obtained with our VNS algorithm on a large set of real instances.
For these experiments, we used the best strategies and parameters identified from the previous tuning
experiments. These configurations are summarized next:

• Use all the neighborhood structures Ni, i = 1, . . . , 4;

• Explore the neighborhoods in the following order: N1, N2, N3 and N4;

• tNi = 2, i = 1, . . . , 4:

• q1i = 1, r1i = 3, (u1
min,i, u

1
max,i) = (10%, 50%);

• q2i = 3, r2i = 3, (u2
min,i, u

2
max,i) = (10%, 50%).

We generated 22 production orders using the set of pieces associated to the first car model in the
same way as in the tuning experiments. The number m of different pieces varies from 5 to 23. Each
production order is cut from three different hides, and hence, we have 66 instances defined from this car
model. Forty-one production orders were generated using the pieces of the second car model. Since only
one hide is used for each production order in this case, we have 41 different instances derived from the
second car model. In Table 6, we describe the characteristics of the production orders. In summary, our
set of instances is composed by 107 different problem instances. As in the tuning experiments, we used a
time limit of 600s. For each instance, the tests were repeated four times. Hence, 428 runs were performed
which took almost 3 days of computing time.

The results for the first car model are reported in Table 7 and 8. Those for the second car model are
given in Table 9. The column Inst. in these tables identifies the problem instance. For the first car model,
we use the same notation to identify the instances as in the tables for the tuning experiments, namely
x; y where x is the index of the production order and y the index of the hide. The tables present the
results obtained with the constructive heuristic used to generate the first layout, and the results achieved

20

CAR MODEL ORDER m

1 1, . . . , 5 5
6, . . . , 10 8

11, . . . , 15 10
16, . . . , 18 12
19, . . . , 21 15

22 23
2 1, . . . , 10 5

11, . . . , 20 8
21, . . . , 30 10
31, . . . , 35 12
36, . . . , 40 15

41 22

Table 6: Instances

by the VNS algorithm after 200s, 400s and 600s of computing time. The column Pieces indicates the
number of pieces placed on the hide. Column Usage gives the percentage of material usage achieved by
the corresponding layout. Column t is used in the part associated to the constructive heuristic to indicate
the time (in seconds) needed by the heuristic to generate the initial solution. The line avg. gives the
average values for the group of instances that is above.

On average, the VNS algorithm is always able to improve the results obtained by the constructive
heuristic. In Table 7, the best improvement is achieved for the instance 5; 1 with an increase of 10,26%
in the total material usage. The VNS algorithm improves the initial solution quickly. Indeed, after 200s
of computation, the algorithm was already able to find a layout that is better than the initial solution.
Furthermore, the solution is improved both after 400s and 600s of computation. These improvements
tend to be less significant for the instances whose results are given in Table 8. On average, the results
are always better than the initial solution but the VNS algorithm takes more time to find a solution that
is clearly better than this first solution. In this table, the best improvement is achieved for the instance
13; 1 with an increase of 6,23%. When the variety of pieces is larger, the constructive heuristic is usually
able to find layouts that have already a high material usage. In these cases, the space for improvements
is smaller, but the VNS algorithm is still able to improve the initial layout. For the hardest instances,
those for which the constructive heuristic cannot find a good quality layout, the VNS algorithm appears
to work as an effective improvement procedure. Not surprisingly, the time needed by the constructive
heuristic to find an initial layout increases with m, the number of different pieces in the instance. This
is due in part to the necessity of recomputing the NFPs and IFPs for each piece right after a piece has
been placed on the hide. Note that the material usage achieved in the final layouts are comparable to the
results obtained by human nesters. Furthermore, these results are achieved within the same time limit
as that needed by two human nesters. One operator would need around 1200s (twice our time limit) to
achieve comparable results.

Similar results are obtained for the instances derived from the second car model. The VNS algorithm
was always able to improve the initial solution except for two instances (35 and 40). In many cases, a
better layout is found right after 200s of computation. The best improvement is obtained for the instance
2 with an increase of 5,46%. Even in the instance with the largest variety of pieces (instance 41) the VNS
algorithm was able to improve by 2,02% the material usage achieved in the first layout.

21

Initial solution VNS
after 200s after 400s after 600s

Inst. Pieces Usage t Pieces Usage Pieces Usage Pieces Usage
1;1 22 59,53 12,86 22,50 59,61 25,00 60,01 27,50 61,09
1;2 23 57,93 15,04 27,50 59,31 29,75 59,93 31,00 60,14
1;3 25 61,57 19,12 25,00 62,34 25,75 62,95 26,75 63,12
2;1 16 56,11 13,01 16,50 57,63 18,00 57,90 20,75 58,97
2;2 17 54,43 14,43 19,00 55,67 24,25 58,27 25,25 58,95
2;3 20 55,77 18,25 20,50 57,18 23,00 59,04 25,00 60,24
3;1 9 46,02 9,00 14,75 54,60 15,50 55,26 17,25 55,19
3;2 14 51,92 11,98 15,75 52,84 18,00 54,78 18,00 54,91
3;3 18 54,77 14,89 18,50 56,04 22,00 57,41 23,50 59,76
4;1 12 51,68 11,01 15,75 55,31 16,00 56,10 16,00 56,10
4;2 13 50,13 12,45 16,00 52,58 18,25 54,68 19,00 55,51
4;3 15 51,87 16,31 15,75 52,82 18,75 56,96 21,00 58,81
5;1 13 51,51 9,06 21,00 60,67 25,25 60,81 24,50 61,77
5;2 18 55,38 11,87 21,25 58,00 24,25 59,24 27,25 60,30
5;3 26 60,99 16,86 26,00 60,99 34,50 61,53 34,75 61,56
avg. 17,40 54,64 13,74 19,72 57,04 22,55 58,32 23,83 59,10
6;1 20 59,12 16,49 20,50 59,67 23,50 61,28 25,75 62,27
6;2 24 61,56 18,72 24,75 61,82 25,00 62,26 25,00 62,26
6;3 23 60,36 22,39 24,50 60,99 25,50 61,75 25,75 62,53
7;1 17 57,50 18,43 18,25 59,07 19,25 61,77 19,75 62,22
7;2 19 57,58 20,85 20,00 59,10 22,75 59,34 24,75 60,77
7;3 22 58,61 26,46 24,00 61,27 24,25 61,55 24,25 61,55
8;1 20 58,92 15,53 21,00 59,90 22,75 61,66 24,25 62,46
8;2 22 60,06 19,53 22,75 60,32 23,00 61,03 25,50 61,57
8;3 24 60,51 23,06 24,00 60,51 25,25 60,93 27,75 63,10
9;1 12 50,78 16,58 13,75 54,04 14,75 54,47 15,25 54,90
9;2 13 50,13 19,33 13,00 50,13 17,25 57,01 18,50 58,05
9;3 14 50,40 23,81 14,50 51,13 18,00 54,88 21,00 58,78
10;1 20 58,92 15,26 21,00 60,55 22,50 61,90 27,75 62,52
10;2 23 60,65 19,40 24,50 63,06 25,25 64,01 25,25 64,01
10;3 25 61,37 23,48 27,25 62,41 28,75 63,47 29,00 63,69
avg. 19,87 57,76 19,95 20,92 58,93 22,52 60,49 23,97 61,38

Table 7: Evaluating the performance of the VNS algorithm: car model 1 (Part I)

7 Conclusions

In this paper, we proposed the first local search metaheuristic for the general LNP using the real case
study of a company that operates in the automotive sector. We described a constructive heuristic to
generate feasible layouts, and we introduced the details of the different neighborhood structures that
were explored. These structures rely on the sequence by which the pieces are placed on the hide, and on
the quality of the fitness of each piece. The fitness of a piece is measured by computing the intersection
of an offset of the piece with the border of the hide and the border of the layout. To explore the different
neighborhood spaces, we developed a VNS algorithm that searches for local optima in a systematic

22

Initial solution VNS
after 200s after 400s after 600s

Inst. Pieces Usage t Pieces Usage Pieces Usage Pieces Usage
11;1 20 58,51 19,50 20,00 59,99 23,00 61,06 29,00 61,27
11;2 24 60,48 23,76 24,00 60,48 24,00 60,48 24,00 60,48
11;3 22 59,45 28,67 22,00 59,45 25,00 61,03 27,50 62,62
12;1 19 60,18 21,63 20,25 61,61 22,00 61,79 28,50 62,54
12;2 22 60,52 24,69 22,00 60,94 24,00 62,24 25,75 62,53
12;3 25 61,38 31,02 25,00 61,38 25,00 61,38 30,75 64,33
13;1 19 58,19 18,28 20,50 60,28 21,25 61,98 26,00 64,42
13;2 21 58,27 21,64 21,00 58,27 23,75 59,61 26,75 61,56
13;3 23 59,53 25,86 23,00 59,53 25,00 62,75 28,25 63,73
14;1 20 60,19 20,74 20,00 60,19 25,25 63,77 25,25 63,77
14;2 23 59,94 25,22 23,00 59,94 24,75 60,53 26,50 61,11
14;3 23 59,62 29,89 23,00 59,62 25,50 61,53 27,75 63,07
15;1 19 58,12 17,75 20,00 59,17 24,75 62,73 25,50 63,78
15;2 24 61,55 22,05 24,00 61,55 26,00 62,41 26,00 62,41
15;3 23 59,81 25,21 23,00 59,81 26,25 63,99 29,25 64,42
avg. 21,80 59,72 23,73 22,05 60,15 24,37 61,82 27,12 62,80
16;1 19 58,19 24,57 19,75 59,44 20,50 60,71 22,25 62,76
16;2 21 58,27 29,69 21,00 58,27 24,00 59,82 26,00 60,67
16;3 23 59,53 37,42 23,00 59,53 24,50 59,75 27,25 63,65
17;1 19 59,15 23,91 19,25 59,60 23,00 61,81 25,00 61,94
17;2 21 59,09 28,67 21,00 59,09 23,50 61,76 24,75 62,55
17;3 23 59,96 35,12 23,00 59,96 25,00 64,19 26,75 64,21
18;1 19 58,12 22,15 20,00 59,65 21,00 60,40 24,50 62,63
18;2 24 61,55 27,99 24,00 61,55 25,75 63,23 26,00 63,24
18;3 23 60,33 33,58 23,00 60,33 24,50 62,97 26,25 62,17
avg. 21,33 59,35 29,23 21,56 59,71 23,53 61,63 25,42 62,65
19;1 49 69,68 38,48 49,00 69,68 49,25 69,94 50,00 71,44
19;2 45 67,27 41,82 45,00 67,27 46,50 67,48 46,25 67,54
19;3 47 66,57 51,30 47,00 66,57 47,00 66,57 45,25 68,71
20;1 76 73,17 51,42 76,00 73,17 78,00 73,55 80,50 74,21
20;2 69 72,29 52,96 69,00 72,29 69,00 72,29 66,75 72,34
20;3 81 72,42 64,93 81,00 72,42 81,00 72,42 95,75 72,66
21;1 48 69,05 38,04 48,00 69,05 46,25 69,56 44,00 70,84
21;2 43 67,57 40,68 43,00 67,57 43,00 67,57 43,00 67,57
21;3 46 66,78 48,15 46,00 66,78 45,75 66,95 50,50 68,05
avg. 56,00 69,42 47,53 56,00 69,42 56,19 69,59 58,00 70,37
22;1 84 73,88 99,30 84,00 73,88 84,00 73,88 84,67 74,08
22;2 81 74,51 100,37 81,00 74,51 81,00 74,51 81,00 74,52
22;3 90 73,78 116,76 90,00 73,78 90,00 73,78 90,00 73,86
avg. 85,00 74,06 105,48 85,00 74,06 85,00 74,06 85,22 74,15

Table 8: Evaluating the performance of the VNS algorithm: car model 1 (Part II)

23

Initial solution VNS
after 200s after 400s after 600s

Inst. Pieces Usage t Pieces Usage Pieces Usage Pieces Usage
1 25 54,81 21,96 26,50 56,26 28,50 57,56 29,75 58,17
2 31 53,18 32,05 33,00 55,69 34,00 57,29 35,00 58,63
3 26 55,20 22,69 27,00 56,07 29,25 57,86 31,50 58,94
4 29 55,72 24,84 30,25 56,53 30,75 57,60 33,75 59,06
5 36 55,84 34,11 35,75 55,94 35,75 55,94 36,50 56,50
6 34 61,82 33,11 37,00 63,86 37,25 64,29 37,25 64,40
7 29 60,80 23,00 29,75 61,41 31,50 62,64 30,25 63,61
8 51 58,22 58,78 51,00 58,22 53,00 60,08 54,00 60,60
9 54 57,07 65,56 54,00 57,07 55,25 59,51 57,25 60,84
10 33 61,56 29,51 34,75 62,58 34,75 63,62 34,50 64,01
avg. 34,80 57,42 34,56 35,90 58,36 37,00 59,64 37,98 60,48
11 22 54,70 24,32 24,50 57,78 24,50 58,36 24,50 58,53
12 39 54,99 52,38 39,00 54,99 40,50 55,89 40,75 57,94
13 41 54,86 52,21 41,00 54,86 41,75 55,37 43,75 57,58
14 39 60,98 53,89 39,00 60,98 41,00 62,11 41,00 62,11
15 39 52,86 58,48 39,00 53,06 39,00 53,67 39,50 53,91
16 33 63,44 34,33 33,00 63,44 33,00 63,93 33,25 63,94
17 35 62,49 33,23 35,00 63,21 35,75 64,29 38,00 65,83
18 52 58,93 56,82 52,00 58,93 54,00 60,31 54,75 60,42
19 50 55,95 76,14 50,00 55,95 50,50 57,28 51,25 58,41
20 29 60,30 31,73 30,50 60,86 32,50 61,84 36,50 63,73
avg. 37,90 57,95 47,35 38,30 58,41 39,25 59,30 40,33 60,24
21 25 57,38 33,19 25,00 57,38 28,00 60,96 27,75 61,42
22 39 54,99 60,14 39,00 54,99 39,25 55,38 41,25 56,86
23 50 59,07 69,43 50,00 59,07 50,00 59,07 50,00 59,17
24 31 64,53 37,23 31,00 64,53 31,50 64,67 31,50 64,67
25 39 52,80 70,57 39,00 52,80 38,50 55,24 39,50 56,01
26 30 62,50 35,50 32,00 63,09 36,25 64,45 37,75 64,75
27 33 64,86 39,78 33,50 65,14 35,75 66,41 36,00 66,54
28 50 56,69 74,65 50,00 56,91 50,00 57,00 51,00 57,71
29 39 61,50 63,95 39,00 61,50 39,75 61,79 41,50 62,84
30 32 62,11 41,71 32,25 62,25 33,00 62,76 39,00 65,52
avg. 36,80 59,64 52,61 37,08 59,77 38,20 60,77 39,53 61,55
31 31 61,41 43,98 31,00 61,41 35,00 63,42 36,75 63,84
32 39 54,35 73,25 39,00 54,35 39,00 54,35 39,50 55,97
33 48 59,16 77,47 48,00 59,16 49,00 59,68 50,00 60,21
34 31 65,21 45,09 31,00 65,21 31,00 65,21 31,75 65,33
35 54 60,74 91,89 54,00 60,74 54,00 60,74 54,00 60,74
avg. 40,60 60,17 66,34 40,60 60,17 41,60 60,68 42,40 61,22
36 31 61,99 53,78 31,00 61,99 35,00 64,07 38,00 64,18
37 48 59,44 91,20 48,00 59,44 48,00 59,44 49,50 60,03
38 47 56,75 105,12 47,00 56,75 48,50 57,40 53,00 58,91
39 32 64,72 51,62 32,00 64,72 32,00 64,72 38,50 67,23
40 54 60,42 106,47 54,00 60,42 54,00 60,42 54,00 60,42
avg. 42,40 60,66 81,64 42,40 60,66 43,50 61,21 46,60 62,15
41 34 64,87 73,84 34,00 64,87 34,00 64,87 39,00 66,89

Table 9: Evaluating the performance of the VNS algorithm: car model 2

24

way on each one of these spaces. Our approaches were tested on a large set of real instances. The
experiments show that the VNS algorithm improves the solutions provided by the constructive heuristic.
Furthermore, the quality of the final layouts that are generated by this algorithm are competitive with
the results achieved by human nesters.

Acknowledgements

This work was partially supported by the Algoritmi Research Center of the University of Minho for
Cláudio Alves and José Valério de Carvalho, by the Portuguese Science and Technology Foundation
through the doctoral grant SFRH/BDE/15650/2007 for Pedro Brás and through the research grant
UMINHO/BII/183/2009 for Telmo Pinto. It was developed in the Systems Engineering, Optimization
and Operations Research Group.

References

[1] F. Alvelos, T. Chan, Paulo Vilaça, Tiago Gomes, Elsa Silva, and J. Valério de Carvalho. Sequence
based heuristics for two-dimensional bin packing problems. Engineering Optimization, 41(8):773–791,
2009.

[2] C. Alves, P. Brás, J. M. Valério de Carvalho, and T. Pinto. New constructive algorithms for leather
nesting in the automotive industry. submitted, 2011.

[3] J. Beltran, J. Calderon, R. Cabrera, J. Perez, and J. Moreno-Vega. GRASP/VNS hybrid for the
strip packing problem. 1st International Workshop on Hybrid Metaheuristics, pages 79–90, 2004.

[4] J. Bennell, J. Dowsland, and K. Dowsland. The irregular cutting-stock problem - a new procedure
for deriving the no-fit polygon. Computers and Operations Research, 28:271–287, 2001.

[5] J. Bennell and J. Oliveira. The geometry of nesting problems: a tutorial. European Journal of
Operational Research, 184(2):397–415, 2008.

[6] A. Crispin, P. Clay, G. Taylor, T. Bayes, and D. Reedman. Genetic algorithm coding methods for
leather nesting. Applied Intelligence, 23(1):9–20, 2005.

[7] P. Ghosh. An algebra of polygons through the notion of negative shapes. CVGIP: Image under-
standing, 54:119–144, 1991.

[8] P. Hansen, N. Mladenovic, and J. Pérez. Variable neighborhood search: methods and applications.
Annals of Operations Research, 175:367–407, 2010.

[9] J. Heistermann and T. Lengauer. The nesting problem in the leather manufacturing industry. Annals
of Operations Research, 57:147–173, 1995.

[10] E. Hopper and B. Turton. An empirical investigation of meta-heuristics and heuristics algorithms
for a 2d packing problem. European Journal of Operational Research, 128(1):34–57, 2001.

[11] W. Lee, H. Ma, and B. Cheng. A heuristic for nesting problems of irregular shapes. Computer-Aided
Design, 40:625–633, 2008.

[12] N. Mladenovic and P. Hansen. Variable neighborhood search. Computers and Operations Research,
24:1097–1100, 1997.

25

[13] F. Parreno, R. Alvarez-Valdes, J. Oliveira, and J. Tamarit. A maximal-space algorithm for the
container loading problem. INFORMS Journal on Computing, 20(3):413–422, 2008.

[14] F. Parreno, R. Alvarez-Valdes, J. Oliveira, and J. Tamarit. Neighborhood structures for the container
loading problem: a VNS implementation. Journal of Heuristics, 16(1):1–22, 2008.

[15] G. Wäscher, H. Haußner, and H. Schumann. An improved typology of cutting and packing problems.
European Journal of Operational Research, 183:1109–1130, 2007.

[16] Z. Yuping and Y. Caijun. A generic approach for leather nesting. Fifth International Conference on
Natural Computation, 5:303–307, 2009.

[17] Z. Yuping, J. Shouwei, and Z. Chunli. A very fast simulated re-annealing algorithm for the leather
nesting problem. International Journal of Advanced Manufacturing Technology, 25:1113–1118, 2005.

26

