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Abstract

In this paper, we deal with a column generation based algorithm for the classical cutting stock
problem. This algorithm is known to have convergence issues, which are addressed in this paper.
Our methods are based on the fact that there are interesting characterizations of the structure of
the dual problem, and that a large number of dual solutions are known. First we describe methods
based on the concept of dual cuts, proposed by Valério de Carvalho (2005). We introduce a general
framework for deriving cuts, and we describe a new type of dual cuts, which exclude solutions that
are linear combinations of some other known solutions. We also explore new lower and upper bounds
for the dual variables, and we present a procedure to set some of these variables to zero. Then we
show how the prior knowledge of a good dual solution helps improving the results. It tightens the
bounds around the dual values, and makes the search converge faster if a solution is sought in its
neighborhood first. A set of computational experiments on very hard instances are reported at the
end of the paper. They confirm the effectiveness of the methods proposed.

1 Introduction

The cutting stock problem (CSP) consists in finding the minimum number of identical stock rolls needed
to cut a set of items of different sizes. It belongs to the class of Cutting and Packing problems as a single
stock-size cutting stock problem [32]. Each item has a given demand, which corresponds to the number
of times it has to be cut from the stock rolls.

Many researchers have used Dantzig-Wolfe decomposition [10] and column generation methods for
solving the CSP (see [15, 16] for the first attempt). The integer program is decomposed into a restricted
master problem initialized with a set of columns, and optimized to determine the value of the dual
variables. The dual information is passed to a subproblem that evaluates if there is still any column that
can be added to the master problem and improve the current solution. If there is such a column, the
master problem is reoptimized, otherwise the process stops.

Column generation processes are known to have convergence issues. The dual variables may oscillate
from one iteration to the next [12], and primal degeneracy may also arise [23]. Convergence of column
generation has been the topic of many contributions. One of the first approaches was the Boxstep method
of Marsten et al. [24]. Their method tries to stabilize and accelerate the column generation process by
guiding the dual variables, imposing box constraints on the solutions of the restricted master. Kallehauge
et al. [21] used a similar scheme to solve the vehicle routing problem with time windows, but instead of
considering fixed-size boxes as in [24], they allowed the boxes to be dynamically updated. In both [24]
and [21], the dual variables cannot lie outside the boundaries defined by the box constraints. In [12], du
Merle et al. relaxed this constraint. The dual variables may take values outside the boxes, but there is
a proportional penalty if that situation occurs. In the primal, this approach consists in adding weighted
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and bounded slack and surplus variables to the original constraints of the problem. The authors report
good results for transportation and location problems.

Other approaches that keep the solution process within the framework of linear programming have
been described in the literature. Kim et al. [22], for example, considered a linear penalty method that
can be extended to column generation ([26]). As an alternative, many nonlinear methods can be used
to stabilize column generation such as the bundle methods [18] and the analytic centers cutting plane
methods [17], for example.

Degraeve and Peeters [11] solved the CSP with column generation using an hybrid procedure that
relies on a subgradient method. Initially, the dual values of the restricted master are updated using
subgradient optimization, and columns are generated based on these values. Simplex is used at a second
stage to optimize the master problem with the new columns. The subgradient method allows for a fast
update of the dual values, and in practice, their approach accelerates the column generation process.

One of the most promising approaches to stabilized column generation has been proposed by Valério
de Carvalho in [31]. The method consists in adding a polynomial number of dual cuts (primal columns)
to the restricted master problem. In [31], the author proposed a set of weak dual-optimal inequalities for
the CSP, which do not cut any optimal solution of the dual problem ([4]). Since then, the method has
been used successfully to accelerate other cutting problems [1, 29]. In [2], Alves and Valério de Carvalho
showed how to solve the multiple length CSP with branch-and-price using these dual cuts in all the nodes
of the branch-and-bound tree. In this paper, we explore the dual cuts of Valério de Carvalho from a
different point of view. We propose new valid dual cuts for the CSP based on new theoretical results,
and we devise new procedures to stabilize column generation processes.

The cuts of [31] can be seen as a restriction of the dual space to a subset of non-dominated solutions
sharing a special structure. The method is based on the fact that there is always an optimal dual solution
whose coefficients can be obtained by applying a non-decreasing and superadditive function to the sizes
of the items. In this paper, we introduce new dual cuts, which take into account the fact that a maximal
solution has to be symmetric in addition to increasing and superadditive.

As they are defined in [31], the dual cuts only exclude solutions that are dominated by another single
solution. Another type of cuts may be applied. It is a classical result of linear programming that any
solution that is the midpoint of two other solutions cannot lead to improved results, even if it is not
dominated by any of these two solutions separately. Consequently, finding properties of non-dominated
solutions may lead to new effective dual cuts, if they can be expressed by the mean of a small set of linear
constraints. Our approach is the following. First we show general results, which allow one to derive cuts
from a valid dual solution. Then we exhibit two such solutions π0 and π1, and we propose hand-tailored
cuts to avoid exploring some solutions that can be expressed as the midpoint of π0 or π1 and another
solution.

Another contribution of this paper is a method that aims at finding lower and upper bounds for the
dual values. The additional piece of information needed by this method is the value of a lower bound,
which is obtained using a set of precomputed dual solutions. This value permits one to update the lower
bounds for several dual values. Then the method exploits the characterization of the maximal solutions
to propagate these lower bounds to all dual variables. We also generalize a result that allows us to remove
the small item sizes if they cannot change the value of an optimal solution.

Another way of taking into account an interesting (hopefully optimal) known dual solution is to
restrict the search space to a small box around this solution, similarly with [3]. To compute these boxes,
we use the values given by the known dual solution that yields the best lower bound among a subset of
functions. Such a dual solution can be obtained by applying a so-called dual-feasible function to the item
sizes. The boxes are increased if they are too small, and at the end they are removed and the search is
resumed. The idea is to make the method converge faster to an interesting area by avoiding large and
useless fluctuations of the dual variables.

All the methods we propose lead to dual constraints (additional columns) that are introduced in a
column generation based method for the CSP. Computational experiments on a set of hard instances
from the literature and randomly generated confirm that each method reduces the number of column
generation iterations and the total computing time.

Section 2 reviews several results of the literature concerning dual solutions and dual cuts. In Section
3 we propose new dual cuts. Section 4 is about bounds for the dual values. Section 5 contains numerical
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experiments.

2 Definitions and previous results

In this section we briefly review several concepts used in this paper. First we describe the model of
Gilmore and Gomory [15, 16] for the CSP. Then we deal with properties of dominant dual solutions of
the CSP. Finally we discuss on how dual cuts can be applied to speed up column generation processes.

Throughout the remainder, we will use the following notation for the cutting-stock problem (CSP).
An instance D = (C, I, b) of CSP is composed of a roll size C ∈ N∗, a set I ⊆ {1, . . . , C} of item sizes,
and a demand function b defined from I to N∗, which associates with each i ∈ I a demand bi ∈ N∗.

2.1 Column generation based model of Gilmore and Gomory [15, 16]

A combination of items of I in a roll is called a pattern. Each possible cutting pattern is described by a
column p = (a1p, . . . , aip, . . . , a|I|p)

T , where aip is the number of items of width i in the pattern p. The
model of Gilmore and Gomory [15, 16] is expressed as follows:

min
∑

p∈P

xp (1)

subj. to
∑

p∈P

aipxp ≥ bi, i ∈ I (2)

xp ≥ 0, ∀p ∈ P (3)

xp integer , ∀p ∈ P (4)

where P is the set of valid patterns. A valid cutting pattern is such that

∑

i∈I

aipi ≤ C, ∀p ∈ P (5)

aip ≥ 0 and integer, ∀p ∈ P, i ∈ I (6)

As the number of possible cutting patterns may be large, the master program is initialized with only
a subset of cutting patterns (columns). It finds the best solution that only uses the patterns available.
Then an optimization algorithm is executed to find a pattern that would improve the quality of the
current solution. This is equivalent to solving a knapsack problem, which can be done using dynamic
programming or an enumerative algorithm. The dual of the LP above reads:

max
∑

i∈I biπi (7)

subj. to
∑
i∈I

aipπi ≤ 1, ∀p ∈ P (8)

πi ≥ 0 (9)

A dual solution π is a vector (π1, π2, . . . , π|I|) that obeys all the constraints (8) and (9). We denote
the value of the solution yielded by π for a given instance (C, I, b) as v(π).

2.2 Superadditive functions, maximal solutions

Throughout the paper, we use the notions of superadditivity and maximality. We now discuss on their
relation with dual solutions.

Definition 1. A function f is superadditive if ∀x, y, f(x) + f(y) ≤ f(x + y).
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By abuse of language, we shall say increasing and superadditive dual solutions if their coefficients
can be obtained by applying an increasing and superadditive function. A function that leads to a dual
solution is said dual-feasible [20] (DFF). DFF are generally defined from [0, 1] to [0, 1]. In the linear
programming relaxation of the CSP, a solution maps values of item sizes in [0, C] into dual solutions in
[0, 1]. We could also define a function from [0, 1] to [0, 1] by scaling the item sizes, i.e., dividing the item
sizes by the roll sizes. However, for the sake of simplicity, we will define dual-feasible functions from [0, C]
to [0, 1], and thus dual values and DFF will be written in the same fashion.

A dual solution π is dominated by another solution π′ if it cannot lead to a better solution for any
data. If a dual solution is not dominated by any other, it is maximal. A corresponding concept has been
defined for DFF by [8]. The following proposition is a slight rewriting of their result.

Proposition 1. (Theorem 1. of [8]). A dual-feasible function is maximal if and only if f(0) = 0, f is
increasing, f is superadditive, and f is such that ∀i = 1, . . . , C, f(i) + f(C − i) = 1.

In the following, we will say that if a function is such that ∀i = 1, . . . , C, f(i) + f(C − i) = 1, it is
symmetric.

A dual solution is maximal if and only if there is a maximal DFF (MDFF) f such that f(i) = πi for all
i of I and all bi. Nemhauser and Wolsey [27] describe conditions that characterize dominant solutions of
the knapsack polytope (i.e. extreme points of the polytope). Not all maximal solutions are extreme points
of the polyhedron. This means that even when we ensure that the considered solutions are maximal,
there are many solutions that are not useful. This is confirmed by the experimentations of Carlier and
Néron [7, 8] in the context of cumulative scheduling problems.

2.3 Dual cuts

In order to speed up the column generation procedure for solving the CSP, Valério de Carvalho [31] added
cuts that exclude solutions that are not superadditive, or not increasing. Only a subset of such cuts were
considered, because they are exponential in number. The dual cuts added were the following.

πi ≤ πj for i < j

πi + πj ≤ πi+j for i, j ∈ I

Dual cuts can be seen as constraints that avoid oscillations of the dual variables. From a primal point
of view, they can also be seen as exchange vectors (see e.g. [28]), which allow to implicitly generate a
whole set of primal columns from the current set of columns available.

2.4 Bounds on the dual values [5]

In the remainder, several results depend on the fact that we know initial lower and upper bounds for the
dual values. The following bounds are valid for any maximal dual solution. This result is rewriting of a
claim of [5].

0 ≤ πi ≤
1

⌊C/i⌋
, for 0 < i < C/2

πC/2 = 1/2

1 −
1

⌊C/(C − i)⌋
≤ πi ≤ 1, for C/2 < i < C

πC = 1

In the sequel we will use respectively li and ui for a lower bound and an upper bound of the value
of πi.

4



3 New dual cuts

In this section, we introduce new dual cuts, which can be applied to a linear program for solving the CSP.
The first cut we propose is similar to those of [31]: it ensures that the dual solution will be symmetric.

The other cuts are based on a different idea, and define a new family of cuts. The motivation is to
avoid solutions that are linear combinations of known solutions, even if they are maximal. Whereas the
cuts of [31] leave at least one optimal solution, our procedures cut off all dual solutions with a given
structure, of which only one needs to be checked in order to see whether the optimal solution is among
these.

3.1 A first family of cuts

The dual cuts proposed in [31] exclude dual solutions that are not increasing and superadditive. Following
the characterization of [27], we can also cut solutions that are not symmetric (Cf. Proposition 1). This
would lead to the following family of cuts.

Proposition 2.

πi + πC−i = 1, ∀i, C − i ∈ I

Proof. If for two values i and C − i, πi + πC−i < 1, then the DFF f that yields the dual solution is not
maximal, since it is not symmetric. Consequently, this solution can be safely cut.

When C is large, there is a small chance that there are two such items of size i and C−i in the instance,
even if a suitable preprocessing method is applied. Practically speaking, we use a slight generalization of
the cuts above.

Proposition 3. The following family of cuts is valid.

πi + πj ≥ 1, ∀i, j ∈ I : i + j ≥ C (10)

Proof. Using Proposition 2, we know that πi +π1−i = 1. Since dominant dual values follow an increasing
rule, πj ≥ π1−i and thus πi + πj ≥ 1.

This family of cuts is straightforward to apply. When combined with the cuts of [31], cuts (10) may
lead to improved results.

3.2 A general result

In the remainder of this section, our goal is to exclude dual solutions that are linear combinations of a
given dual solution π′ and another solution. First we state general results, which are independent of any
chosen solution π′. This leads to a general framework for deriving cuts. Then two specific functions π0

and π1 are studied, and more specific cuts are derived.
An issue is that such cuts may also cut π′. This means that the value of an optimal solution found

when these cuts are applied may be strictly less than the value of an actual optimal solution. If that
happens, π′ is an optimal solution. The following general proposition ensures that these cuts are safe if
π′ has been recorded.

Let π′ be a dual solution of the CSP and E be a cut that excludes only π′ and a set of dual solutions
that can be expressed as a convex combination of π′ and another dual solution.

Proposition 4. If OPT is the optimal solution of the LP, ÔPT the optimal solution of the LP obtained

when E is applied, OPT = max{v(π′), ÔPT}.

5



3.2.1 Characterization of dominated solutions

Using the general result of Proposition 4, powerful cuts can be derived if one is able to characterize
solutions that are convex combinations of some other solutions. Before showing how that can be done,
we first state a result that helps us proving that a solution is the midpoint of two other solutions, and
thus cannot lead to a better result.

Lemma 1. Let f be a maximal dual-feasible function. Function f only leads to solutions π that are
dominated if and only if there exists a maximal dual-feasible function g different from f such that

f(x) = 0 =⇒ g(x) = 0 (11)

f(x) + f(y) = f(x + y) =⇒ g(x) + g(y) = g(x + y) (12)

Proof. We first show that if both properties above are satisfied, h = (f − ǫg)/(1 − ǫ) is a superadditive
and increasing function for a small-enough positive value ǫ.

It is sufficient to show that h is superadditive, and positive (if the two properties are true, the function
must be increasing). For the sake of simplicity, we make the proof with f − ǫg.

The function f − ǫg is positive, since by assumption, there is no value x such that f(x) = 0 and
g(x) 6= 0. Since the domain of the function is discrete, one can always find a small enough ǫ to ensure
that f − ǫg is always positive.

Now we prove that the function is also superadditive. For all x, y such that f(x) + f(y) < f(x + y),
one can always find a sufficiently small ǫ to ensure that (f − ǫg)(x) + (f − ǫg)(y) ≤ (f − ǫg)(x + y). For
x, y such that f(x) + f(y) = f(x + y), the relation is satisfied, since in this case g(x) + g(y) = g(x + y).

We have shown that h is superadditive and increasing if the properties above are satisfied. Function
f can be rewritten as ǫg + (1 − ǫ)h, with g a MDFF, and h a superadditive and increasing function. So
any solution π yielded by f can be expressed as the midpoint of two other solutions. Consequently it is
dominated.

3.2.2 Deriving the cuts

In the following we adapt the conditions of Lemma 1 to dual solutions instead of dual-feasible functions
(which is straightforward), and we relax these conditions so they can be expressed as linear constraints.
Constraints (13) and (14) below are respectively related to constraints (11) and (12). For condition (14),
we consider any pair of values such that πj + πk < πj+k in π and compute a lower bound for a weighted
sum of the dual values if πj + πk = πj+k in a dual solution. This bound is obtained by improving the
lower bounds of πj and πk, and then by propagating these lower bounds using the superadditivity.

Let π be a maximal dual solution defined for values {1, . . . , C} and i∗ be the smallest value smaller
than or equal to C/2 such that πi∗ > 0 in π. If π is maximal, this value exists since at least πC/2 = 1/2.
Let also ∆ be the set of pair of values (j, k) such that πj + πk < πj+k in π. In the following, we use the
values li and ui, the bounds defined in Section 2. Without loss of generality, we consider that j < k.

Note that in the following, the values t̂
(j,k)
i have to be computed by increasing value of i, and even

for values of {1, . . . , C} that are not included in I.

Proposition 5. If π does not yield the optimal solution, there exists an optimal solution π′ such that
either

π′
i∗ = 0 (13)

or the following dual cut is valid, for any set of real parameters λi, i ∈ I:

∑

i∈I

π′
iλi ≥ min

(j,k)∈∆




lj+kλj+k +
∑

i∈I\{j,k}

t̂
(j,k)
i λi




 (14)

with
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t̂
(j,k)
i =






li if i < j

max {li, lj+k − uj} if i = j

max

{
li, max

l+m=i
{t̂

(j,k)
l + t̂

(j,k)
m }

}
if j < i < k

max

{
li, max

l+m=i
{t̂

(j,k)
l + t̂

(j,k)
m }, lj+k − uk

}
if i = k

max

{
li, max

l+m=i
{t̂

(j,k)
l + t̂

(j,k)
m }

}
if i > k

Proof. We have to show that any solution that is cut is also a linear combination of π and another dual
solution. It will follow that the cut is safe if π does not yield the optimal solution.

First we show that the value t̂
(j,k)
i is a valid lower bound for the value that π′

i can take when π′
j +π′

k =

π′
j+k. By the initial assumption, t̂

(j,k)
i ≥ li. Since π′

j + π′
k = π′

j+k, we know that π′
k ≥ lj+k − uj . For

i = j, a similar deduction can be made. For any value greater than j, the validity of t̂
(j,k)
i is due to the

superadditivity of a MDFF.
This means that the right-hand term of Equation (14) is a lower bound for

∑
i∈I π′

iλi when there is
at least one pair (j, k) in ∆ such that π′

j + π′
k = π′

j+k. Consequently, in any solution π′ that does not
respect constraint (14), there is no pair (j, k) of ∆ such that π′

j + π′
k = π′

j+k.
Using Lemma 1, we deduce that if a solution does not respect any of the two constraints (13) and

(14), it is a linear combination of π and another solution. Under the initial assumption, any such solution
can be safely cut.

This leads to a general three-step method for deriving cuts when a dual solution π is known (take
one of those surveyed in [9] for example). Since we know that at least one of the two conditions has to
hold, it means that either both hold (step 3), or only (13) holds (step 5), or only (14) holds (step 8). The
method is described by Algorithm 1, where i∗ is defined as above.

Algorithm 1: A generic method for applying dual cuts that exclude a given dual solution

Create the original LP ;1

Apply the cuts (13) and (14) to the LP ;2

Solve the LP obtained ;3

Remove the cuts (14) from the LP ;4

Solve the LP obtained ;5

Remove the cut (13) from the LP;6

Add the cut π∗
i > 0 and the cuts (14) to the LP ;7

Solve the LP obtained ;8

Return the best value obtained ;9

The quality of the cuts depends on the choice of initial dual solution and on the values λi. Several
methods can be used to compute a suitable set of coefficients, either by taking into account the demand
for each item, or randomly. Practically speaking, we used random coefficients, which led to the best
results.

3.3 The solution π
0

Any dual solution can be used in the framework described above. When specific dual solutions are
considered, more powerful cuts can be derived. First we study a dual solution with a simple structure.

• πi = 0 for i < C/2

• πC/2 = 1/2
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Figure 1: A dual-feasible function that leads to π0

• πi = 1 for i > C/2

The value related to this solution is equal to the number of items of size greater than C/2 plus the
number of items of size C/2 divided by two. We name this dual solution π0. The corresponding dual-
feasible function is pictured in Figure 1. We chose this solution for its simple structure, and for it would
lead to the most unbalanced solutions, in terms of the values of the dual variables.

3.3.1 Characterization of solutions combined with π0

Proposition 6. Let f be a MDFF such that, for all x < C/2, f(x) < x/C. Then any dual solution
yielded by f is the midpoint of π0 and another dual solution.

Proof. We use Lemma 1 to show this result. By definition, π0 can be obtained by the mean of a MDFF,
that we name g0. We have to show that conditions (11) and (12) are verified, where g0 plays the role of
g and f is defined as above.

Since g0(x) = 0 for all x < C/2, and since for any MDFF f , f(x) > 0 if x ≥ C/2, condition (11) is
verified.

Now we show that condition (12) is also verified, i.e. for all pairs x, y such that f(x)+f(y) = f(x+y),
we have g0(x)+ g0(y) = g0(x+ y). The proof consists in six cases, which cover all possibilities. Three are
related to cases where g0(x) + g0(y) is always equal to g0(x + y), the others are related to cases where
f(x) + f(y) cannot be equal to f(x + y).

In the three following cases, g0(x) + g0(y) is always equal to g0(x + y).

1. If x + y < C/2, g0(x) + g0(y) = 0 + 0 = 0 and g0(x + y) = 0.

2. If x < C/2 and y > C/2, g0(x) + g0(y) = 0 + 1 = 1 and g0(x + y) = 1.

3. If x = y = C/2, g0(x) + g0(y) = 1/2 + 1/2 = 1 and g0(x + y) = g0(1) = 1.

In the two following cases, f(x) + f(y) cannot be equal to f(x + y).

1. If x < C/2, y < C/2, and x + y = C/2, by assumption f(x) + f(y) < x/C + y/C = 1/2 and since
f is maximal (and then symmetric), f(x + y) = f(C/2) = 1/2.

2. If x < C/2, y ≤ C/2, and x + y > C/2, f(x) + f(y) < x/C + y/C. By symmetry, f(x + y) =
1−f(C−x−y). Since C−x−y < C/2, f(C−x−y) < 1− x+y

C . Consequently, f(x+y) > x/C+y/C.

We use Proposition 6 to detect dual solutions that are dominated by π0 and another solution. The
purpose of Proposition 7 is to show a way of verifying that a dual solution is yielded by a dominated
MDFF.
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Proposition 7. Let D = (C, I, b) be an instance of CSP and π be a maximal dual solution. If i < C/2
implies πi < i/C, then there exists a dual solution π′ different from π such that v(π) ≤ max{v(π0), v(π′)}.

Proof. First we write a function f that yields π.

f : i 7→






0 if i < min{I}

πi if i ∈ I

maxj:0<j<i{f(j) + f(i − j)} if i 6∈ I, min{I} < i < C/2

1/2 if i = C/2

1 − f(C − i) if i 6∈ I, i > C/2

(15)

Since we consider a maximal dual solution, f is maximal by construction. We show that f is such
that for all i < C/2, f(i) < i/C. For values in I, it is true by assumption. For values i that are not in I,
we show the result by recurrence.

By initial assumption, either 1 does not pertain to I, or π1 < 1/C. In both cases, f(1) < 1/C.
Now suppose that for a given value k < C/2 − 1, we have f(i) < i/C for all values i < k. If k + 1 is

in I, f(k + 1) < (k + 1)/C. If k + 1 is not in I, f(k + 1) is equal to f(j) + f(k + 1− j) for a given j. By
assumption, f(j) < j/C and f(k + 1 − j) < (k + 1 − j)/C. Thus f(k + 1) < (k + 1)/C. Consequently,
for all values i such that i < C/2, f(i) < i/C.

Proposition 6 tells us that any dual solution yielded by f is dominated by π0 and another dual solution.
Since f(i) = πi for all i ∈ I, this concludes the proof.

3.3.2 Deriving the cuts

Cuts can be obtained using the general result of Proposition 5, but since π0 has a specific structure,
a hand-tailored method can be designed. The idea is to cut some solutions where there are no values
i < C/2 such that πi ≥ i/C. This cannot be verified directly by the mean of a linear cut, so we study
the different values that can be taken by the sum of the dual values.

There must be one value j such that πj ≥ j/C. Our idea is to consider the weighted sum of the dual

values for each possible j. For this purpose, we compute x̂j
i , the minimum value that πi can take when

πj = j/C. All values πi with i < j can be equal to 0, whereas the values larger than j have to follow the
superadditivity rule.

Note that x̂j
i have to be computed by increasing values of i, and even for values that are not in I.

Proposition 8. If v(π0) < OPT , and I1 = {i ∈ I, i < C/2}, for any positive values λi, i ∈ I1, the
following cut is valid

∑

i∈I1

πi × λi ≥ min
j∈I1

{
∑

i∈I1

x̂j
iλi

}
(16)

with

x̂j
i =






0 if i < j

j/C if i = j

max
l,m∈I:l+m=i

{x̂j
l + x̂j

m} if i > j

Proof. Proposition 7 tells us that there must be at least one item j ∈ I1 such that πj ≥ j/C. For a

given j, x̂j
i is the minimum value that πi can take in a maximal solution when πj = j/C (this bound

is obtained by considering the superadditivity only). Consequently
∑

i∈I1
x̂j

iλi is a lower bound for the
weighted sum of the dual values when πj = j/C. If one tests all possibility for j, and keep the minimum
sum, a lower bound for

∑
i∈I1

πi × λi is obtained.

9
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Figure 2: A dual-feasible function that leads to π1

Note that even if some items sizes do not appear in the instance, they have to be considered in the
computation of x̂j

i . For a given value of C, a given set I, and a given set of parameters, the right-hand
part of the inequality can be computed only once for all executions. When such a cut is applied, one has
to be aware that solution π0 is also cut. For the method to remain exact, v(π0) has to be recorded.

As an example, cut (17) is obtained by using (16) with λj = 1 and λj−1 = 1, and all other λk = 0.
An issue is to find an interesting set of parameters λi.

Proposition 9. If π0 is not an optimal solution, and j is the largest value of I strictly less than C/2,

πj + πj−1 >
j

C
(17)

is a valid dual cut.

Corollary 1. If π0 is not the optimal solution, and j is the largest value of I strictly less than C/2,

πj ≥
j

2C
(18)

Example 1. If C = 100, and the largest size of a small item is 30, we have the cut π30 ≥ 3/20. Initially
the upper bound for π30 is 1

⌊100/30⌋ = 1/3, which means that the size of its domain is divided by two.

3.4 The solution π
1

We now consider the following dual solution, which we name π1 (see Figure 2 for the corresponding
dual-feasible function).

• πi = 0 if i ≤ C/3

• πi = 1/2 if i ∈]C/3, 2C/3[

• πi = 1 if i ≥ 2C/3

In the following, we study this dual solution, and derive dual cuts to exclude solutions that are
obtained by linear combination of π1 and another solution. This is more difficult than with π0, since its
structure is slightly more complex. A three-step method is used, whereas only one step was needed for
π0.

3.4.1 Characterization of solutions combined with π1

Proposition 10. Let f be a maximal function. If x ≤ C/3 implies f(x) < 3x/4C, and x ∈]C/3, C/2[
implies f(x) ≥ 3x/4C, then any dual solution yielded by f is the midpoint of π1 and another dual solution.

10



Proof. We use Lemma 1 to show this result. By definition, π1 can be obtained by applying a MDFF to
the item sizes, that we name g1: g1(x) = 0 if x ≤ C/3, g1(x) = 1/2 if x ∈]C/3, 2C/3[ and g1(x) = 1 if
x ≥ 2C/3. We show that the two conditions of Lemma 1 are verified, where g1 plays the role of g and f
is defined as above.

We have g1(x) = 0 for x ≤ C/3. For the values in ]C/3, C/2[, f is strictly greater than 0 by
assumption. Consequently the first condition of Lemma 1 is verified.

Now we show that for each pair x, y such that f(x) + f(y) = f(x + y), g1(x) + g1(y) = g1(x + y).
Without loss of generality, we assume that x ≤ y. Eight cases have to be considered.

In the four following cases, g1(x) + g1(y) is always equal to g1(x + y).

1. If x ≤ C/3, y ≤ C/3 and x + y ≤ C/3, g1(x) + g1(y) = 0 + 0 = 0 and g1(x + y) = 0.

2. If x ≤ C/3 and y ∈]C/3, 2C/3[ and x + y ∈]C/3, 2C/3[, g1(x) + g1(y) = 0 + 1/2 = 1/2 and
g1(x + y) = 1/2.

3. If x ∈]C/3, 2C/3[ and y ∈]C/3, 2C/3[, g1(x) + g1(y) = 1/2 + 1/2 = 1 = g1(x + y).

4. If x ≤ C/3 and y ≥ 2C/3 and x + y ≥ 2C/3, g1(x) + g1(y) = 0 + 1 = 1 and g1(x + y) = 1.

In the five following cases, f(x) + f(y) cannot be equal to f(x + y).

1. If x ≤ C/3, y ≤ C/3 and x+y ∈]C/3, C/2], f(x)+f(y) < 3x/4C+3y/4C and f(x+y) ≥ 3(x+y)/4C.

2. If x ≤ C/3, y ≤ C/3 and x + y ∈]C/2, 2C/3[, f(x) + f(y) < 3(x + y)/4C. Since x + y < C/3, this
is smaller than 3(2C/3)/4C = 1/2 and f(x + y) ≥ 1/2 since f is a MDFF.

3. If x = C/3, y = C/3 and x + y = 2C/3, f(x) + f(y) < 3(x + y)/4C and by symmetry f(x + y) =

1 − f(C − x − y). Since C − x − y ≤ C/3, this is greater than 1 − 3(C−x−y)
4C = 1/4 + 3(x + y)/4C.

4. If x ≤ C/3, y ∈]C/3, C/2] and x + y ≥ 2C/3, we have f(y) ≤ 1/2 since y ≤ C/2 and f is
nondecreasing and symmetric. Thus f(x) + f(y) < 3x/4C + 1/2 ≤ 3

4C
C
3 + 1/2 = 3/4 and by

symmetry f(x+y) = 1−f(C−x−y) > 1− 3(C−x−y)
4C = C+3(x+y)

4C = 1/4+ 3(x+y)
4C ≥ 1/4+ 3(2C/3)

4C =
1/4 + 1/2 = 3/4.

5. If x ≤ C/3, y ∈]C/2, 2C/3[ and x + y ≥ 2C/3, f(x) < 3x
4C and by symmetry f(y) = 1 − f(C − y).

Since C − y ∈]C/3, C/2[, f(C − y) ≥ 3(C − y)/4C and thus f(y) ≤ 1 − 3(C−y)
4C . Consequently,

f(x) + f(y) < 3x
4C + 1 − 3(C−y)

4C = C+3x+3y
4C and by symmetry f(x + y) > 1 − 3(C−x−y)

4C = C+3x+3y
4C .

The following proposition shows a way of verifying that a given dual solution is yielded by a dominated
MDFF. The proof is avoided, since it is similar to Proposition 7 (constructing the underlying MDFF and
applying Proposition 10).

Proposition 11. Let D = (C, I, b) be an instance of CSP and π be a maximal dual solution. If for all
i ≤ C/3, πi < 3i/4C, and for all i ∈]C/3, C/2[, πi ≥ 3i/4C, then there exists a dual solution π′ different
from π such that v(π) ≤ max{v(π1), v(π′)}.

3.4.2 Deriving the cuts

There is no straightforward way of deriving a cut from this property, since the condition to be verified
is ∃i ≤ C/3, πi ≥ 3i/4C or ∃i ∈]C/3, C/2[, πi < 3i/4C. This means that three non-dominated cases are
possible: the first condition is verified, the second condition is verified, or both are verified.

This leads to a three-step method, where each step is related to a possible case. First we assume that
there are no values i ≤ C/3 such that πi ≥ 3i/4C (only condition 2 has to be verified). We add the
corresponding cuts. When the optimal solution under this first assumption is found, cuts are added to
ensure that the second condition is also respected, and the program rerun (conditions 1 and 2 have to be
verified). Then the cuts added in the first step are removed, and replaced by a cut that can be derived
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from the fact that there is at least one value i ≤ C/3 such that πi ≥ 3i/4C (now only condition 1 has to
be verified). The method is summed up in Algorithm 2.

The cuts we derived are based on the following propositions, whose proofs are omitted, since they are
similar to Proposition 8.

Note that ŷj
i has to be computed by increasing values of i and even for values that are not in I.

Proposition 12. If the optimal solution is such that there are no items i ≤ C/3 such that πi ≥ 3i/4C
in the optimal solution, and if v(π1) < OPT , then for any positive values λ1, . . . , λk, and I1 defined as
above,

∑

i∈I1

πi × λi ≤ max
j∈I∩]C/3,C/2[

{
∑

i∈I1

ŷj
i λi

}
(19)

is a valid dual cut, where ŷj
i is defined as follows:

ŷj
i =






3j/4C
⌊j/i⌋ if i < j

3j/4C if i = j

1/⌊C
i ⌋ if i > j

Note that ẑj
i has to be computed by increasing values of i and even for values that are not in I.

Proposition 13. If the optimal solution is such that there is an item i of I∩[1, C/3] such that πi ≥ 3i/4C,
then for any positive values λ1, . . . , λk, and I1 defined as above,

∑

i∈I1

πi × λi ≥ min
j∈I∩[1,C/3]

{
∑

i∈I1

ẑj
i λi

}
(20)

is a valid dual cut, where ẑj
i is defined as follows:

ẑj
i =






0 if i < j

3j/4C if i = j

max
l+m=i

{ẑj
l + ẑj

m} if i > j

4 Bounding the dual variables

Another way of taking into account the data is to consider an estimation for the number of stock rolls
needed. In this section, we propose to use this information to tighten the bounds ui and li for each dual
variable πi. We also describe how variables related to small values can be set to zero. Finally we show
that limiting the search space to the neighborhood of an initial good dual solution improves previous
results.

For the sake of simplicity, we consider in the remainder that I = {1, . . . , C}. When an item size
i is not in the original problem, we consider that bi = 0. In the sequel, OPT (I) is the optimal value of a
solution for the set I, LB is a lower bound for OPT (I) and UB an upper bound for this value.

4.1 New bounds

The first method is a lifting procedure for the lower bounds li associated with the dual values πi. It is
based on a trial-and-error procedure. A solution is chosen by setting the dual variable πi to its minimum
li and all other dual variables to their maximum ui. If the value of (possibly invalid) solution is smaller
than a known lower bound, li is not valid, and it can be updated. This reasoning may lead to better
results if the superadditivity constraints are considered.

Let l̂
(j,α)
i be a lower bound for the value πi when πj = α. It is defined as follows, similarly to x̂j

i of
Proposition 8:
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Algorithm 2: Applying the cuts (19) and (20)

Compute v(π1) ;1

Add the cut
∑

i∈I πibi > v(π1) ;2

// Assume that for all i ≤ C/3, πi < 3i/4C and there is a C/2 > j > C/3 such that

πj < 3j/4C
Add the cuts πi < 3i/4C, ∀i ≤ C/3 ;3

Add the cuts (19) ;4

Run the column-generation procedure ;5

// Assume that there is an i ≤ C/3, such that πi ≥ 3i/4C and a C/2 > j > C/3 such

that πj < 3j/4C
Remove the cuts on the i ≤ C/3 ;6

Add the cuts (20) ;7

Resume the column-generation method ;8

// Assume that there is an i ≤ C/3, such that πi ≥ 3i/4C and for all C/2 > i > C/3,
πi ≥ 3i/4C

Remove the cuts (19) ;9

Add the cut πi ≥ 3i/4C, ∀C/3 < i < C/2 ;10

Resume the column-generation method ;11

// Let OPT be the optimal value obtained

return max{v(π1), OPT } ;12

l̂
(j,α)
i =






li if i < j

α if i = j

max
{
li, max

j+k=i
{l̂

(j,α)
j + l̂

(j,α)
k }

}
if j < i < C − j

1 − α if i = C − j

max
{
li, 1 − α

⌊ j
C−i

⌋
, max
j+k=i

{l̂
(j,α)
j + l̂

(j,α)
k }

}
if C − j < i

For the sake of simplicity, we also introduce an additional notation û
(j,α)
i = 1 − l̂

(j,α)
C−i , which is the

equivalent upper bound obtained by symmetry. Now we define θj(α), a function that associates with the
value α the corresponding upper bound on the value of a solution obtained when πj = α. This bound is

based on l̂
(j,α)
i described above, and on the symmetry of a MDFF.

θj(α) =

C/2∑

i=1

max{bi × û
(j,α)
i + bC−i × l̂

(j,α)
C−i , bi × l̂

(j,α)
i + bC−i × û

(j,α)
C−i } + bC (21)

Lemma 2. For j < C/2, πj = α implies
∑

i∈I πibi ≤ θj(α).

Proof. We prove this result in two steps. First we prove that l̂
(j,α)
i is a lower bound for πi when πj = α.

Then we will deduce that the inequality is valid.

For any value i ≤ j, l̂
(j,α)
i is a valid lower bound by assumption. If i = C − j, we have πi = 1 − α by

symmetry. For any value i > j, by superadditivity, we have l̂
(j,α)
i ≥ max

j+k=i
{l̂

(j,α)
j + l̂

(j,α)
k }. For C − j < i,

we have πC−i ≤ α
⌊ j

C−i
⌋
, otherwise πj could not be equal to α if the coefficients follow a superadditive

rule. By symmetry, πi ≥ 1 − α
⌊ j

C−i
⌋
.

Now we prove that the inequality is valid. Consider each pair of values i and C − i: these values are

such that πi +πC−i = 1. This means that for all i, πibi +πC−ibC−i ≤ max{bi × û
(j,α)
i + bC−i × l̂

(j,α)
C−i , bi ×

l̂
(j,α)
i + bC−i × û

(j,α)
C−i }. Indeed, either bi is greater than bC−i and maximizing the expression consists in

setting πi to its upper bound, or in the other case, πi have to be set to its lower bound.
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The validity of the lemma follows.

Lemma 2 leads to the following cut, which can be applied when lower bounds li and upper bounds ui

are known for the values πi.

Proposition 14. Let LB be a valid lower bound for the CSP. The two following constraints are valid
dual cuts for the CSP for each j < C/2.

πj ≤ max{α : α ∈ [li, ui], θ
j(α) ≥ LB}

πj ≥ min{α : α ∈ [li, ui], θ
j(α) ≥ LB}

are valid dual cuts for the CSP.

4.2 Computational issues

We now discuss computational issues related to Proposition 14. Function θ depends on the demand for
each item type: it may not be convex, and thus the dichotomy cannot be used to determine the extrema.
We describe two different approaches. One is based on a relaxation, the other is based on a small linear
program.

4.2.1 Solving a relaxation

First we relax the relations in order to obtain a new function θ̄j(α) that is decreasing in α. The maximum
value of α such that θ̄j(α) ≥ LB can be computed by dichotomy. Consequently, replacing θ by θ̄ allows
us to compute an upper bound for πj .

The relaxation is obtained as follows: we use the initial upper bounds for the items of size less than j.
In this case, only the superadditivity is used to increase the value of lower bounds. Moreover, we modify
the upper bound of πj only if bj < bC−j. For the values such that bj ≥ bC−j, the expression is constant.

For the values such that bj < bC−j, increasing the value of α decreases the value of bi×û
(j,α)
i +bC−i× l̂

(j,α)
C−i .

Consequently the obtained function is decreasing in α.
In order to obtain a lower bound for πj , the opposite relaxation is applied. We take into account the

constraint related to the items less than or equal to j if bj > bC−j. The obtained function is increasing,
and thus an upper bound can be computed for πj by dichotomy.

4.2.2 Solving a linear program

Another way of computing a lower bound for α is to solve the following linear program (22)-(28). In this
program, the lower bound is LB, li and ui are respectively a constant lower and a constant upper bound
for πi, and bi is the demand for item i. Two versions of this program can be used, depending on the fact
that I contains all sizes, or only sizes with a non-zero demand.

min πj (22)

subj.to

∑

i∈I

πibi ≥ LB (23)

πi+k − πi − πk ≥ 0 for i, k, i + k ∈ I (24)

πi − πk ≥ 0, for i > k (25)

πi + πC−i = 1 for i ∈ I (26)

πi ≥ li for i ∈ I (27)

πi ≤ ui for i ∈ I (28)

An upper bound is obtained by replacing the min by a max.
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Discussion 1. If all item sizes are used, the problem solved is close to the model of Dyckoff [13] for
solving the CSP. This means that the computational effort could be even larger than the one needed for
the column-generation. When we only consider item sizes of demand strictly greater than 0, it is slightly
greater than the initial solution in the column-generation based method of [31]. One way of improving the
bound is to add additional rows related to patterns. If too many rows are added, the method could be too
much time consuming, so a tradeoff has to be found. For example, in our computational experiments, we
already get good results using only a subset of the constraints of (22)-(28).

Thus a lower bound for the problem can lead to tighter lower and upper bounds for some πi. Note

that increasing a value li may help tightening other bounds when it is used in a new definition of l̂
(j,α)
i .

So the process can be repeated while a value has been modified in the previous step.
This method can also be used with an upper bound UB. In this case, we assume that UB is equal

to the optimal value, and we apply the method. If the program leads to a value less than UB, the
assumption is false, and UB can be decremented.

4.3 Removing non-useful items

Another way of taking into account the value of the solution is to deduce a set of items whose dual value
is zero. For example, if the solution has a value greater than the continuous lower bound, the items of
size one have their dual value equal to zero. Symmetrically, when the optimal solution is equal to the
number of large items, all dual values related to items smaller than C/2 are equal to zero. These are the
two extreme cases, which are generalized by Proposition 15 (they are respectively related to cases k = 0
and k = C/2 − 1).

Proposition 15. If ⌈
∑

i∈I bi×i

C−k ⌉ + 1 is a valid lower bound for the number of bins needed to pack the
items, then OPT (I) = OPT (I \ {1, . . . , k + 1}).

Proof. We show that OPT (I) > OPT (I \ {1, . . . , k + 1}) implies OPT (I) < ⌈
∑

i∈I bi×i

C−k ⌉ + 1.
Consider any optimal solution π for I \{1, . . . , k+1}. From this solution, we will construct a heuristic

solution for I, and show that it uses less than ⌈
∑

i∈I bi×i

C−k ⌉ bins. For this purpose we use the following
algorithm.

For each item size i ≤ k + 1, create bi items of size i and put them in a list L. Then pack these items
in the bins Bj of π, which are already filled with items of size greater than k + 1. The rule used is the
following: while there are at least k +1 units of free space in Bj , pack the next item a of L (in any order)
in Bj . Note that item a is always small enough to be packed in the current bin.

By assumption, there are remaining items to pack when all bins have been considered (otherwise
OPT (I) = OPT (I \ {1, . . . , k + 1})). Create an infinite number of empty bins and repeat the previous
step with these new bins until all items have been packed.

A heuristic solution for I has been constructed. Let δ be the quantity of lost space in this solution and

z the number of bins used. We have z =
δ+

∑
i∈I

bi×i

C . By construction, all bins have at most k units of
waste, except the last bin, which can contain C−1 units of waste. Thus δ < (z−1)×k+C. Consequently,

we can write the following inequality: z <
(z−1)×k+C+

∑
i∈I

bi×i

C . This leads to Cz < kz−k+C+
∑

i∈I bi×i

and thus z <
∑

i∈I bi×i+C−k

C−k ≤ ⌈
∑

i∈I bi×i

C−k ⌉ + 1.

Consequently this solution uses a quantity of bins strictly less than ⌈
∑

i∈I bi×i

C−k ⌉+1, which is the result
sought.

4.4 Original trust region

In [3], the authors show that enforcing the dual values to be near a priori known optimal dual values
(using boxes around the optimal dual values) fasten the convergence. We propose to extend this method
when a good (possibly non optimal) dual solution is known. Several families of DFF have been proposed
in the literature (see [9]). There is a chance that some optimal dual values are near the values given by
the best DFF used. We propose the following algorithm: we apply a set of DFF, and keep the one which
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leads to the best result, then we assume that the dual values are optimal, and add the corresponding
boxes around the dual values and solve the LP. Then, these constraints are removed and the search
resumed. Algorithm 3 describes our method.

Algorithm 3: Forcing an original trust region

consider a given CSP instance D ;1

find the best DFF f available for D ;2

build a classical Gilmore-Gomory LP for the CSP, with additional constraints ensuring that dual3

values are near those given by f ;
solve the LP ;4

if the constraints related to f are too strong, and this step has not been repeated too many times5

then relax the constraints and goto 4;
remove the constraints related to f ;6

resume the resolution of the LP ;7

In practice, we enforce box constraints that are always centered around the values given by the best
DFF. If these boxes are too small, their sizes are increased a very small number of times, and the search
is resumed.

5 Computational Experiments

To evaluate the strength of the new cuts and methods proposed above, we conducted a set of computa-
tional experiments on a set of randomly generated cutting stock instances and on a set of hard instances
of the literature [30]. Our focus is on hard instances, i.e. those which are solved in a large amount of
time using the standard column generation algorithm. We used instances with a large number of different
items, and such that the sizes of the items are small compared to the length of the rolls.

Table 1 illustrates the main characteristics of the instances. Column SET identifies the instance set,
C stands for the length of the rolls, MIN and MAX correspond to the size of the smallest and the
largest item, respectively, NIT is the average number of different item sizes in the instance and B is the
average demand per item size. Each set is composed of 10 different instances. The last set is taken from
the literature [30], and it is also composed of 10 instances.

SET C MIN MAX NIT B
1 100000 1 50000 200 20
2 100000 1 50000 500 20

3 100000 1 35000 200 20
4 100000 1 35000 500 20

5 100000 1 20000 200 20
6 100000 1 20000 500 20

7 100000 1 10000 200 10
8 100000 1 10000 500 10

9 100000 35000 50000 1000 20

HARD 100000 20000 35000 200 20

Table 1: Set of instances

The algorithms were coded in C++, and the CPLEX 10.2 Callable Library [19] was used for some
of the optimization subroutines. The tests were performed on a PC with an 2.20 GHz Intel Core Duo
processor, and 2GB of RAM.

Clearly, given the length of the rolls and the relative size of the items, solving the knapsack pricing
subproblems using dynamic programming is not computationally viable. Hence, we solved them using
the branch-and-bound algorithm MT1 for knapsack problems, which is due to Martello and Toth [25].
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In the following tables, we compare the main stabilization strategies described in this paper with the
standard column generation algorithm with and without the dual cuts proposed in [31]. We show how
our strategies make column generation converge faster when they are used alone, and together with the
dual cuts of Valério de Carvalho [31]. The cuts are used according to the method of [31]. The first
restricted master problem is initialized with a single (artificial) column, and the dual cuts are added prior
the resolution of the first restricted master problem. Whenever we considered the specific dual cuts of
Valério de Carvalho, we only applied cuts of Type I and II [31].

Five new methods were compared to the standard column generation algorithm, and to the stabiliza-
tion procedure proposed in [31], namely the dual cuts (16), the algorithms 1 and 2, and the methods
based on the computation of dual bounds and on a trust region.

The parameters λi in the dual cuts (16), and in the algorithms 1 and 2 were chosen in the following
way: the λi’s were set equal to 1 for the first n items in the respective items set while the remaining λi’s
were set equal to 0; the process was repeated for the n + 1 first items, and so on, until all the items were
finally considered. Thus, the number of cuts that were generated this way is equal to the cardinality of
the items set considered in the respective cut. Other experiments were conducted considering other sets
of parameters, but none gave better results.

Concerning the implementation of the trust region method, in these experiments, we limited the
number of iterations to 10, and we used two dual-feasible functions ([14],[6]) to compute the initial trust
region. Initially, the dual variables are forced to be within a box of size proportional to i/C and centered
around the values given by the best dual-feasible function. Whenever a dual variable lies at the frontier
of that boxes, the size of the box is simply increased.

The results of the different experiments are given in Table 2 through Table 6. These results correspond
to the resolution of the linear programming relaxation of the column generation model for the CSP. The
execution was stopped after 900 seconds. An instance was considered as solved if the optimum was
reached within this time limit. The entries in the tables have the following meaning:

. Strategy: solution method used, for example

. standard denotes the standard column generation algorithm,

. with dual cuts [31] means that we added a polynomial set of dual cuts as in [31] before solving
the first restricted master,

. with dual cuts (16)) means that we used only the described cuts,

. Algorithm 1 means that we used this algorithm with no other dual cuts.

. solved: number of instances solved within the time limit,

. itr: average number of pricing subproblems solved (column generation iterations);

. %red. itr: relative reduction in the number of column generation iterations (compared to the
standard algorithm);

. ttot: average solution time (in seconds);

. %red. ttot: relative reduction in the total solution time (compared to the standard algorithm).

When a method fails to solve a single instance in a set, the respective rows are filled with entries −.
Our experiments show a clear improvement on convergence when compared to standard column gen-

eration and to the method proposed in [31]. In fact, the latter seems to be quite ineffective on these
hard instances. In many cases, the convergence of column generation greatly deteriorates when these
particular cuts are used, and, even if the number of iterations is usually smaller when these cuts are
applied alone, the computing time needed to solve the instances is almost always worse.

In general, the number of instances solved to optimality within the time limit increases significantly
when the stabilization strategies described in this paper are considered. In terms of the computing
time required to solve the instances, the improvement is also impressive. In some cases, it goes up to
almost 98%. Furthermore, the reduction is regular. For all the instance sets, there is always more than
one strategy that improve significantly the results. In the other cases, a better parametrization of the
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methods would certainly give better results. For example, in the instance set 9, the method based on
the computation of dual bounds reduced drastically the number of column generation iterations, but the
total computing time increased. This is due to the fact that we derived these bounds for each item size.
Only for very demanding instances should such an approach be used.

Set Strategy solved itr %red. itr ttot %red. ttot

1 standard 10 1112.50 74.71

with dual cuts [31] 10 969.00 12.90 90.49 -21.12

with dual cuts (16) 10 1059.60 4.76 68.21 8.69

with dual cuts (16) and [31] 10 946.10 14.96 78.79 -5.47

Algorithm 1 10 1064.80 4.29 73.18 2.04

Algorithm 1 and dual cuts [31] 10 968.00 12.99 73.31 1.87

Algorithm 2 10 858.30 22.85 71.02 4.93

Algorithm 2 and dual cuts [31] 10 768.40 30.93 71.66 4.08

with dual bounds 10 1059.90 4.73 69.37 7.14

with dual bounds and cuts [31] 10 946.90 14.89 67.73 9.34

trust region 10 651.40 41.45 59.95 19.75

trust region with dual cuts [31] 10 610.90 45.09 96.13 -28.68

2 standard 8 2431.50 654.73

with dual cuts [31] 0 − − − −

with dual cuts (16) 10 2410.00 0.88 522.19 20.24

with dual cuts (16) and [31] 8 1925.30 20.82 647.05 1.17

Algorithm 1 10 2367.00 2.65 518.57 20.80

Algorithm 1 and dual cuts [31] 10 1965.20 19.18 539.92 17.54

Algorithm 2 10 1759.30 27.65 364.79 44.28

Algorithm 2 and dual cuts [31] 10 1464.70 39.76 419.07 35.99

with dual bounds 9 2336.10 3.92 554.66 15.28

with dual bounds and cuts [31] 8 1913.40 21.31 503.08 23.16

trust region 10 1494.70 38.53 291.10 55.54

trust region with dual cuts [31] 10 1260.80 48.15 416.35 36.41

Table 2: Comparing the stabilization strategies on instance sets 1 and 2

6 Conclusion

It is well known that the linear bounds provided by column generation models for the CSP are strong,
and hence any method that improves the efficiency of these methods is of great interest. Among the
strategies proposed in the literature, dual cuts are among the most promising. In this paper, we proposed
new procedures to derive dual cuts for the CSP. With the cuts generated using our approaches, we were
able to reduce the number of column generation iterations necessary to solve this problem. We also
described new methods for bounding the dual variables, permanently, or during an initialization phase.
These methods were tested on a broad range of instances from the literature, and they proved to be
effective in many cases.

Many families of dual-feasible functions have been proposed in the literature, each is related to a
family of dual solutions. Finding properties of functions that are linear combination of these known dual
functions would be a way of improving our results. Applications of these ideas to enumerative methods
is a work in progress.
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Set Strategy solved itr %red. itr ttot %red. ttot

3 standard 9 861.20 218.40

with dual cuts [31] 8 701.80 18.51 354.31 -62.23

with dual cuts (16) 10 791.70 8.07 119.37 45.35

with dual cuts (16) and [31] 10 703.90 18.27 129.87 40.54

Algorithm 1 10 797.00 7.45 106.41 51.28

Algorithm 1 and dual cuts [31] 10 710.60 17.49 137.00 37.27

Algorithm 2 10 828.20 3.83 193.46 11.42

Algorithm 2 and dual cuts [31] 9 678.60 21.20 243.57 -11.52

with dual bounds 10 785.90 8.74 108.35 50.39

with dual bounds and cuts [31] 10 708.30 17.75 169.02 22.61

trust region 10 567.60 34.09 82.74 62.12

trust region with dual cuts [31] 10 499.90 41.95 80.44 63.17

4 standard 5 1545.60 766.15

with dual cuts [31] 0 − − − −

with dual cuts (16) 8 1762.00 -14.00 652.35 14.85

with dual cuts (16) and [31] 8 1499.20 3.00 712.66 6.98

Algorithm 1 9 1809.50 -17.07 690.94 9.82

Algorithm 1 and dual cuts [31] 8 1476.80 4.45 603.15 21.28

Algorithm 2 8 1857.70 -20.19 705.34 7.94

Algorithm 2 and dual cuts [31] 6 1247.60 19.28 772.65 -0.85

with dual bounds 8 1784.20 -15.44 654.16 14.62

with dual bounds and cuts [31] 6 1227.60 20.57 713.16 6.92

trust region 10 1297.30 16.06 536.25 30.01

trust region with dual cuts [31] 9 1107.40 28.35 531.12 30.68

Table 3: Comparing the stabilization strategies on instance sets 3 and 4
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