
A survey of dual-feasible and superadditive functions

François Clautiaux ?, Cláudio Alves†, José Valério de Carvalho†

? LIFL,UMR CNRS 8022, Université des Sciences et Technologies de Lille, INRIA

Bâtiment INRIA, Parc de la Haute Borne, 59655 Villeneuve d’Ascq, France

francois.clautiaux@univ-lille1.fr
† Centro de Investigação Algoritmi da Universidade do Minho,

Escola de Engenharia, Universidade do Minho, 4710-057 Braga, Portugal

{claudio,vc}@dps.uminho.pt

May 20, 2008

Abstract

Dual-feasible functions are valuable tools that can be used to compute both lower bounds for
different combinatorial problems and valid inequalities for integer programs. Several families of
functions have been used in the literature. Some of them were defined explicitly, and others not.
One of the main objectives of this paper is to survey these functions, and to state results concerning
their quality. We clearly identify dominant subsets of functions, i.e. those which may lead to better
bounds or stronger cuts. We also describe different frameworks that can be used to create dual-
feasible functions. With these frameworks, one can get a dominant function based on other ones.
Two new families of dual-feasible functions obtained by applying these methods are proposed in this
paper.

We also performed a computational comparison on the relative strength of the functions presented
in this paper for deriving lower bounds for the bin-packing problem and valid cutting planes for
the pattern minimization problem. Extensive experiments on instances generated using methods
described in the literature are reported. In many cases, the lower bounds are improved, and the
linear relaxations are strengthened.

1 Introduction

The concept of dual-feasible function (DFF) has been used to improve the resolution of several cut-
ting/packing (CP) problems, and more generally any problem involving knapsack inequalities (scheduling
problems, vehicle or network routing). It was used for the first time for deriving algorithmic lower bounds
for bin-packing problems by Lueker [25]. A subclass of dual-feasible functions restricted to the superad-
ditive and nondecreasing functions have also been used to strengthen cuts [13] for integer programs (see
also [1, 27]).

When the literature concerning algorithmic lower bounds for CP problems and the literature con-
cerning valid inequalities for integer programs are considered, it appears that these two literatures are
somehow disconnected. For example, to our knowledge, a function proposed by Burdett and Johnson [7]
in 1977 has never been used for computing lower bounds for bin-packing problems. First the terminology
is not the same. Functions designed for lower bounding are often referred to as dual-feasible, whereas
the functions used to strengthen integer programming models are referred to as superadditive and non-
decreasing. The relation between the two families of functions is that the latter is a dominant family of
DFF. In the context of scheduling problems, Carlier and Néron [12] use the term of redundant functions,
which are actually discrete DFF. They introduce the notion of Maximal DFF, discrete superadditive and
nondecreasing functions, with an additional property of symmetry.

Superadditive and nondecreasing functions can be used to generate valid inequalities for integer pro-
grams (see [27], for example). DFF can also be used to derive valid inequalities; however they have

1



only been used explicitly with this purpose in [2] and [3]. Many principles that apply to superadditive
functions and valid inequalities have a direct counterpart in the theory of dual-feasible functions, but to
the best of our knowledge no connections have ever been established.

Most of the methods proposed for computing dual-feasible functions are polynomial and rely on
known families of functions (see [25, 16, 17, 9] for example). One can also use enumerative algorithms
for computing DFF. Carlier and Néron [12] proposed a branch-and-bound algorithm for computing all
discrete dual-feasible functions for a given size of data. For the two-dimensional bin-packing problem,
Caprara et al. [8] proposed a bilinear program, which computes the best pair of DFF to apply to an
instance. The method returns excellent results for a reasonable computing time.

Our objective with this paper is to survey the different dual-feasible functions that were used explicitly
or not in the literature, to gather new results concerning these DFF and superadditive functions, and
to give an insight into the simple frameworks that generally underly complicated formulations. We also
generalize several methods of the literature for obtaining more complex DFF from simple ones, and
present a new framework that allows to deduce a maximal DFF from a non-maximal DFF. The latter
is an important contribution of the paper that allowed us to derive two new families of functions, which
improve previous ones.

The problem we used to benchmark the different functions in terms of lower bounding capabilities
is the one-dimensional bin-packing problem (1BP). It consists in minimizing the number of identical
one-dimensional bins needed to pack a set of small items. It is NP-hard [18]. In the typology of [29], it
is classified as a Single Bin-Size Bin-Packing Problem. This problem has been widely studied, and is an
issue in many other problems. Thus computing fast lower bounds for this problem is of great interest.
To study the behavior of these DFF when deriving valid inequalities, we used the pattern minimization
problem (PMP), which is a lexicographic problem: it consists in finding a solution with a minimum
number of different patterns that uses no more than a given number of large objects. This number is
obtained by solving first the corresponding cutting stock problem.

We compare existing functions, theoretically, and practically by using them for obtaining lower bounds
for the one-dimensional bin-packing problem and valid inequalities for integer programs. Each function
is tested alone, and in composition with another function. It transpires from our experiments that
gathering the functions described in an integer-programming context, and in an algorithmic context,
leads to improved lower bounds for the 1BP and to stronger cuts for the PMP.

In Section 2, we recall the concepts of dual-feasible functions, superadditive nondecreasing functions,
and how they can be used to compute lower bounds and strengthen linear formulations. Section 3 is
devoted to previous and new techniques designed for obtaining new DFF by combining previously known
functions. In Section 4, we analyze functions that have been proposed in the literature, and show that
several methods implicitly rely on a dual-feasible function. When dominance relations exist between two
families of functions, we emphasize it. Section 5 is dedicated to computational experiments.

2 DFF and superadditive functions

In this section, we introduce some definitions concerning DFF and superadditive functions. We recall sev-
eral results and, in particular, the fact that nondecreasing superadditive functions are a dominant family
of dual-feasible functions, and that maximal DFF [12] are themselves a dominant family of the nonde-
creasing superadditive functions. We also show that any DFF can be used to generate valid inequalities
for integer programs.

2.1 Dual-feasible functions

The concept of dual-feasible function is defined as follows.

Definition 1. A function f : [0, 1] → [0, 1] is dual-feasible if for any finite set S of real numbers, we have
∑
x∈S

x ≤ 1 ⇒ ∑
x∈S

f(x) ≤ 1.

An alternative definition can be given when the linear relaxation of the integer program of Gilmore
and Gomory [20, 21] is considered. In this program, each item size has a demand bi, which is equal to
the number of times the item must be cut from the initial bins of size C. This program is the following:

2



min
∑

p∈P

xp (1)

subj. to
∑

p∈P

aipxp ≥ bi, i = 1, . . . , C (2)

xp ≥ 0, ∀p ∈ P (3)
xp integer , ∀p ∈ P (4)

where P is the set of valid patterns, aip the number of times item i appears in pattern p, xp the
variable determining how many times the pattern p is used in the solution. The dual of the LP above
reads:

max
∑

i∈I biπi (5)

subj. to
C∑

i=1

aipπi ≤ 1,∀p ∈ P (6)

πi ≥ 0 (7)

In this context, a function f is said to be dual-feasible if there exists a valid dual solution π of the
linear program of [20, 21] such that f(i/C) = πi for any value i in [1, C]. By definition, a bound obtained
using a DFF cannot be greater than the linear relaxation of the model of [20, 21], but there is always a
function that yields this bound.

Dual-feasible functions are generally defined in [0, 1]. However, when data are integer, using discrete
values instead may lead to simpler formulations. Carlier and Néron [10, 11, 12] propose a discrete version
of DFF. They use the designation of redundant functions to denote such functions. These functions are
defined from [0, C] to [0, C ′] (C and C ′ strictly positive integers) instead of being defined from [0, 1] to
[0, 1].

When data of the cutting stock problem are integer, for every discrete DFF, there is an equivalent
DFF defined in [0, 1] and vice versa. Let f be a DFF defined from [0, 1] ∩Q to [0, 1] ∩Q, and α ∈ N an
integer such that αf(x) ∈ N for any x ∈ [0, 1] ∩ Q. A discrete DFF g defined from [0, C] to [0, α] is the
following: g(x) = f(x/C)× α.

Throughout this paper, we will use this notation since it generally leads to more-easily understandable
formulations.

2.2 Superadditive functions and maximal DFF

Not all dual-feasible functions are interesting. To obtain good lower bounds or strong valid inequalities,
one can only use functions that are superadditive and nondecreasing. Carlier and Néron introduce the
notion of maximal DFF (MDFF) [12], which are not dominated by any other valid function. In the sequel,
we present these MDFF using a slightly modified notation.

Definition 2. A DFF f is a MDFF if there does not exist any other DFF f ′ such that f(x)
f(C) ≤ f ′(x)

f ′(C) for

all x ≤ C and there exists a value y such that f(y)
f(C) < f ′(y)

f ′(C) .

Several properties characterize the MDFF. They have to be nondecreasing, superadditive, and also
symmetric, i.e. if the sum of two values is C, the sum of their images must be f(C). These properties
are stated formally in the following proposition.

Proposition 1. [12] A DFF f is an MDFF if and only if the following conditions hold:

1. f is nondecreasing,

2. f is superadditive, i.e., f(x) + f(y) ≤ f(x + y)

3. f is symmetric, i.e., ∀x ∈ [0, C], f(x) + f(C − x) = f(C),

3



4. f(0) = 0.

Most of the functions that are analyzed in this paper are maximal. When they are not, they are gener-
ally dominated by another known function. When this is not the case, we provide the new corresponding
maximal function.

2.3 DFF and valid inequalities

Apart from computing fast lower bounds, any dual-feasible function can be used to generate valid in-
equalities for integer programs defined over the sets S = {x ∈ Zn

+ :
∑n

j=1 aijxj ≤ bi, i = 1, . . . ,m} such
that bi ≥ aij ≥ 0 and bi > 0 for any i, j. This property is stated formally in the sequel.

Proposition 2. If f : [0, 1] → [0, 1] is a DFF and S = {x ∈ Zn
+ :

∑n
j=1 aijxj ≤ bi, i = 1, . . . , m}, with

bi ≥ aij ≥ 0 and bi > 0 ∀i, j, then for any i,
∑n

j=1 f(aij

bi
)xj ≤ 1 is a valid inequality for S.

Proof. Given the prerequisites, for any i, we have that
∑n

j=1
aij

bi
xj ≤ 1. These inequalities can be

rewritten as
∑n

j=1

∑xj

k=1
aij

bi
≤ 1. Applying the definition of dual-feasible functions yields the following

valid inequality
∑n

j=1

∑xj

k=1 f(aij

bi
) =

∑n
j=1 f(aij

bi
)xj ≤ 1.

Given Proposition 1, this result generalizes (and hence is stronger than) an earlier result presented in
Nemhauser and Wolsey [27].

Any valid inequality for S can be obtained either through a superadditive function or is dominated by
an inequality that has been computed this way [27]. Cuts that are generated by a superadditive function
are commonly referred to as superadditive inequalities. Among these cuts, those that are not dominated
by any other inequality are said to be maximal. Clearly, the facets of the integer hull of S belong to this
set. Maximal valid inequalities are necessarily superadditive, and can be obtained by functions that have
the additional property of symmetry. The dominant families of dual-feasible functions are characterized
exactly by the same set of properties.

Any maximal inequality for S can be obtained through the Gomory procedure which is based on
recursive linear combinations and rounding of other inequalities for S. The problem is that in order to
get these maximal cuts, it might be necessary to use a very long recursion. In [27], the basic superadditive
function underlying the Gomory procedure was given. Nemhauser and Wolsey made the assumption that
other superadditive functions, eventually more complex, might generate these maximal cuts using shorter
recursions, hence the relevance of research on dual-feasible functions as tools to compute valid inequalities
for integer programs. In other works, alternative characterizations of the integer hull of S in terms of
a finite set of superadditive inequalities were proposed [23]. However, even it is finite, the set of cuts
required remains very large.

To the best of our knowledge, the first experiences on using explicitly dual-feasible functions to
generate valid inequalities for integer programs was done in [2] and in [3]. The authors applied dual-
feasible functions that were used before only for lower bounding in packing problems. The optimization
problem addressed in [2] was the PMP. In a previous paper [28], Vanderbeck used a set of superadditive
functions (see Section 4.4) to strengthen a column generation model for the PMP. He proved that the
resulting valid inequalities were stronger than the rank 1 Chvátal-Gomory cuts, but as shown in [2], the
functions that he used are not maximal.

In Section 5, we report on computational experiments on the PMP in order to gain more insight on
the ability of the DFF addressed in this paper to generate good valid inequalities for this problem.

3 Frameworks for creating valid DFF

A way of obtaining complex superadditive functions is to combine simple superadditive functions. In
this section, we first recall some results concerning linear combinations and compositions of functions.
Then we describe two frameworks to compute a maximal DFF from another DFF, and we state two other
general results. When we analyze specific functions of the literature in Section 4, we will precise on which
framework it relies when it is relevant.

4



3.1 Compositions and linear combinations

A simple way of combining two functions is to compute a linear combination, or to compose two DFF
(see [16] for example).

Proposition 3. A composition, or a positive linear combination of superadditive functions is superaddi-
tive.

More particularly, it is shown in [27] that if f and g are superadditive, then, for λ ≥ 0, λf , bfc, f + g,
min{f, g} are superadditive. Note that for λ > 0, max{0, x − λ} is also superadditive, whereas x + λ is
not.

A composition or a positive linear combination of MDFF is also an MDFF. Function min{f, g} is not
maximal, unless f = g. As function f(x) = bxc is not a MDFF, in general bf(x)c is not dominant either.

3.2 Finding a corresponding dominant function by symmetry

In the literature, several superadditive and nondecreasing functions are proposed, which are not maximal.
The following result aims at creating a MDFF when one knows a non-maximal superadditive function f .
A dominating maximal DFF f̂ can be built by keeping the images of the values smaller than C/2 and
computing the images of the values larger than C/2 by symmetry. This is a generalization of what is
done implicitly by Carlier et al. in [9].

Theorem 1. Let f be a superadditive and nondecreasing function defined from [0, C] to [0, f(C)], and
such that f(0) = 0. The following function is a maximal DFF.

f̂ : [0, C] → [0, 2f(C)]

x 7→





2f(C)− 2f(C − x), for C ≥ x > C
2 ,

f(C), for x = C
2 ,

2f(x), for x < C
2 .

Proof. Function f̂ is symmetric by construction. By assumption, it is superadditive on [0, C
2 ]. We have

to verify that f̂(x + y) ≥ f̂(x) + f̂(y) for several cases.

1. If x, y < C
2 and x+y > C

2 . Suppose f̂(x+y) < f̂(x)+ f̂(y). It means that 2f(C)−2f(C−x−y) <
2f(x) + 2f(y). It is in contradiction with the fact that f is superadditive.

2. If x > C
2 and y < C

2 . Suppose f̂(x + y) < f̂(x) + f̂(y). It means that 2f(C) − 2f(C − x − y) <
2f(C)− 2f(C − x) + 2f(y). We obtain f(C − x− y) + f(y) > f(C − x), which is in contradiction
with the fact that f is superadditive.

3. If x = C
2 and y = C

2 , the result is immediate.

4. If x = C
2 and 0 < y < C

2 . Suppose f̂(x + y) < f̂(x) + f̂(y). It means that 2f(C) − 2f(C
2 − y) <

f(C) + 2f(y). We obtain f(C) < 2f(y) + 2f(C
2 − y) ≤ 2f(C

2 ), which is in contradiction with the
fact that f is superadditive.

Using this result, many well-known simple superadditive functions can lead to MDFF. Note that f̂
dominates f , but it is not the only function to dominate f . A slightly weaker result is implicitly used by
Carlier and Néron [12] in their enumerative scheme for computing discrete MDFF, but it does not hold
when f(C) is odd.

5



3.3 Improving a function by studying its limiting behavior

Theorem 2 shows another way of obtaining an MDFF from a non-maximal superadditive function f .
The case we consider occurs when for some value x where f is not continuous, the value of f(x) can be
increased without modifying the other values. This technique leads to an improved function with some
singular values x such that lim

ε→0−
f(x + ε) < f(x) < lim

ε→0+
f(x + ε). This technique is implicitly used by

[16, 28, 15] for example. Theorem 2 is used in the sequel to show that some functions are maximal.
For the sake of simplicity, for a given function f and a given value x∗ for which f is defined, we define

f̄x∗ the function defined as follows: f̄x∗(x) = f(x) if x 6= x∗, and f̄x∗(x∗) = f(x∗) + ε with ε a real
value as small as needed. Note that when f is a DFF, f̄x∗ may or may not be a DFF. In the following
theorem, for a given DFF f , I2 is the set of values x∗ such that f̄x∗ is also a DFF, i.e. the set of values
for which the image can be increased. In the sequel we say that a function f is right-continuous in x if
lim

ε→0+
f(x + ε) = f(x).

Theorem 2. Let f be a superadditive and nondecreasing function defined from [0, C] to [0, f(C)] such
that f(0) = 0. We denote by I2 the subset of values x from [0, C] such that f̄x is a DFF, and I1 the set of
remaining values. We suppose that I2 is a discrete set of values {x1, . . . , xk} and that f is right-continuous
on each set [0, x1), (x1, x2), . . . (xk, 1] of I1.

For a given function g, the following function

h : [0, C] → [0, f(C)]

x 7→
{

f(x) if x ∈ I1

g(x) if x ∈ I2

is a superadditive nondecreasing function if the following conditions are true.

1. f(x) ≤ g(x) ≤ lim
ε→0+

f(x + ε) for any x in I2

2. g(x) + g(y) ≤ g(x + y) if x, y, x + y ∈ I2

3. g(x) + f(y) ≤ g(x + y) if x ∈ I2, x + y ∈ I2 and y ∈ I1

Proof. By construction, function h is nondecreasing, and such that h(0) = 0. We have to show that it is
also superadditive, i.e., for any values x and y, h(x)+h(y) ≤ h(x+ y). The proof consists in three cases,
depending on the values x and y.

1. x ∈ I1 and y ∈ I1.

If x + y ∈ I1, the result is true since f is superadditive. If x + y ∈ I2, by construction g(x + y) ≥
f(x + y) ≥ f(x) + f(y), so the result is also true in this case.

2. x ∈ I2 and y ∈ I1.

If x + y ∈ I2, the result is true by assumption. If x + y ∈ I1, we have to show that g(x) + f(y) ≤
f(x + y). Since f is superadditive, we have lim

ε→0+
f(x + ε) + f(y) ≤ lim

ε→0+
f(x + y + ε). Note that by

assumption, g(x) ≤ lim
ε→0+

f(x + ε). Function f is right-continuous in x + y, so lim
ε→0+

f(x + y + ε) =

f(x + y). Consequently, we obtain: g(x) + f(y) ≤ f(x + y).

3. x ∈ I2 and y ∈ I2.

If x+ y ∈ I2, the result is true by assumption. If x+ y ∈ I1, we have lim
ε→0+

f(x+ ε)+ lim
ε→0+

f(y + ε) ≤
lim

ε→0+
f(x + y + ε). Function f is right-continuous in x + y, and by assumption g(x) ≤ lim

ε→0+
f(x + ε)

and g(y) ≤ lim
ε→0+

f(y + ε). Consequently, we obtain the sought result: g(x) + g(y) ≤ lim
ε→0+

f(x + ε) +

lim
ε→0+

f(y + ε) ≤ lim
ε→0+

f(x + y + ε) = f(x + y).

6



3.4 Using two different functions for bxc and rx

In this paragraph, we address the functions that apply on rational values. When x is rational, rx will
denote the fractional part of x (rx = x−bxc). Practically speaking, if the data are integer, one can divide
all values by a given rational to obtain rational values.

The following result shows that a way of associating two DFF is to apply them separately to the
integer part and to the fractional part of the values. This is valid if the conditions of Lemma 1 are
verified.

Lemma 1. Let f and g be two superadditive functions respectively defined on [0, C] and [0, 1]. If f(x+1)−
f(x) ≥ v∗ for all x ∈ [0, C−1], and for all y, y′ ∈ [0, 1] such that y+y′ > 1, g(y+y′−1) ≥ g(y)+g(y′)−v∗,
the function defined as follows

h(x) = f(bxc) + g(rx)

is superadditive on [0, C].

Proof. We have to show that h(x+y) ≥ h(x)+h(y) for all x, y in [0, C]. Two cases have to be considered,
depending on the value rx + ry.

1. If rx + ry < 1, bx + yc = bxc+ byc and rx+y = rx + ry. The result is immediate.

2. If rx+ry ≥ 1, bx+yc = bxc+byc+1 and rx+y = rx+ry−1. We have f(bxc+byc) ≥ f(bxc)+f(byc).
By original assumption, we obtain f(bxc+byc+1) ≥ f(bxc)+f(byc)+mini=0,...,C−1{f(i+1)−f(i)}.
Now consider function g. We have g(rx + ry − 1) ≥ g(rx) + g(ry)− g(1). The result directly follows
from the two relations.

The condition of the lemma is restrictive, since only strictly increasing functions f can lead to a
superadditive function. However the conditions on function g are not too strong, and many functions can
be used. For example, if g is a classical DFF defined from [0, 1] to [0, 1], f has to be strictly increasing
and such that f(x) − f(x − 1) > 1 for all x in [0, C]. We will show in the next section that functions
proposed in [7] and [24] use this framework.

3.5 Using the ceiling function

The ceiling function is not superadditive. However it can lead to superadditive functions if it is minored
by a suitable value. We now generalize several results that use this kind of method.

Lemma 2. Let f be a superadditive function. If β ≥ 1, g(x) = max{0, df(x)e − β} is superadditive.

Proof. Consider two values x and y, x < y. If df(x)e ≤ β, since d.e is nondecreasing, we have g(x + y) ≥
g(x) + g(y). In the other case, df(x + y)e ≥ df(x)e + df(y)e − 1. Consequently, df(x + y)e − β ≥
df(x)e+ df(y)e − 2β.

This scheme is used implicitly in [28] and [24], and it may lead to interesting results.

4 Comparative analysis of dual-feasible functions

In the sequel, we survey different functions proposed in the literature. We state them explicitly as dual-
feasible functions, we give their discrete version, and determine if the function is maximal or not. For
the sake of comprehension, we define new notation fX,i for each function, where X is the initial of the
authors, and i a number.

7



4.1 Fekete and Schepers [16]

Fekete and Schepers [16] propose three dual-feasible functions. Two are maximal, but the third is not a
MDFF.

The first function fλ
0 is used implicitly by Martello and Toth [26] in their L2 lower bound for the

bin-packing problem. Function fλ
0 , with λ ∈ [0, 1

2 ], consists in removing all values of size less than a given
threshold λ, and symmetrically increasing to one the size of the large values.

fλ
0 : [0, 1] → [0, 1]

x 7→





1, for x > 1− λ,

x, for λ ≤ x ≤ 1− λ,

0, for x < λ.

It has been shown that this function is superadditive and nondecreasing [2, 14], and even maximal [14].
We report neither the equivalent discrete function, nor the proof of maximality, which are straightforward.
Only values k ≤ 1/2 such that 1− k is the size of a large item are interesting. Note than when λ is small
enough, fλ

0 is equivalent to the identity function, and so the lower bounds for the bin-packing problem
obtained using this function are never smaller than the initial continuous bound.

The second function fλ
FS,1, λ ∈ N \ {0}, can be seen as a special rounding procedure. It is an

improvement on a function proposed by Lueker [25], using Theorem 2. Values equal to 1/(λ + 1),
2/(λ + 2), . . ., λ/(λ + 1) are not modified.

fλ
FS,1 : [0, 1] → [0, 1]

x 7→
{

x, for x(λ + 1) ∈ Z,

b(λ + 1)xc 1
λ , otherwise.

An equivalent discrete DFF fk
FS,1, k ∈ N, states as follows.

fk
FS,1 : [0, C] → [0, Ck]

x 7→
{

xk, if x(k+1)
C ∈ N,⌊

x(k+1)
C

⌋
C, otherwise.

In [2], a proof is given showing that it is superadditive. The reader can easily check that this function
is also symmetric.

Proposition 4. Function fk
FS,1 is a maximal DFF.

The third function described in [16] is fλ
FS,2, with λ ∈ (0, 1

2 ].

fλ
FS,2 : [0, 1] → [0, 1]

x 7→





1− b(1−x)λ−1c
bλ−1c , for x > 1

2 ,
1

bλ−1c , for λ ≤ x ≤ 1
2 ,

0, for x < λ.

This function is not superadditive [2] (for λ < 1/4, consider x = λ and y = λ). In [16], the authors
use fk

0 and fλ
FS,1 in composition to obtain better results. Other DFF that dominate fλ

FS,2 have been
proposed in the literature [6, 9]. We give next the discrete version of this function, which will make
evident that it is dominated by the function fk

CCM,1 described below. Let k ∈ [1, C
2 ].

fk
FS,2 : [0, C] → [0,

⌊
C

k

⌋
]

x 7→





bC
k c − bC−x

k c, for x > C
2 ,

1, for k ≤ x ≤ C
2 ,

0, for x < k.

8



4.2 Boschetti and Mingozzi [6]

Boschetti and Mingozzi [6] and Boschetti [4] respectively propose bounds for the two- and three-dimensional
bin-packing problems. For the two-dimensional bin-packing problem, they implicitly use function fλ

0 and
fk

BM,1, an improved discrete version of fk
FS,2. We do not report the formulation of this function, as a

slightly improved version ([9]) is described next. In [14], it is shown that any iterative composition of fki
0

and f ji

BM,1 is dominated by a function of the form fk
BM,1 ◦ f l

0.

4.3 Carlier et al. [9]

Carlier et al. propose a slight improvement on the function of Boschetti [9], by enforcing the image of C
2

to be fk
CCM,1(C)/2. This function can also be obtained by applying Theorem 1 to function bx/kc. Note

that as for fk
0 , when k = 1, this function is equivalent to the identity function. Let k ∈ [1, C/2].

fk
CCM,1 : [0, C] →

[
0, 2

⌊
C

k

⌋]

x 7→





2(bC
k c −

⌊
C−x

k

⌋
), if x > C

2 ,

bC
k c, if x = C

2 ,

2
⌊

x
k

⌋
, if x < C

2 .

Proposition 5. Function fk
CCM,1 dominates fk

FS,2.

Proof. Multiply the expression of fk
FS,2 by 2. The values larger than C

2 and those less than k have the
same image with the two functions, but values between k and C

2 have a value equal to 2
⌊

x
k

⌋ ≥ 2 using
fk

CCM,1, and 2 using fk
FS,2 × 2. Values equal to C

2 have an image equal to bC
k c ≥ 2 using fk

CCM,1 and 2
using fk

FS,2 × 2. Since fk
CCM,1(x) > 2× fk

FS,2(x) for any x in (k,C/2], fk
CCM,1 dominates fk

FS,2 × 2.

4.4 Vanderbeck [28]

In [28], Vanderbeck uses a superadditive and nondecreasing function fk
V B,1, k ∈ {2, . . . , C}, to derive valid

inequalities for the pattern minimization problem which are stronger than the rank 1 Chvátal-Gomory
cuts [13]. His function states as follows.

fk
V B,1 : [0, C] → [0, k − 1]

x 7→ max{0,

⌈
kx

C

⌉
− 1}.

Function fk
V B,1 is a DFF, and it is also superadditive (it is direct using Lemma 2). In [2], it is shown that

fk
FS,1 dominates fk

V B,1. This conclusion becomes clear when we rewrite this function similarly to fk
FS,1.

fk
V B,1 : [0, C] → [0, k − 1]

x 7→
{

kx
C − 1, for kx

C ∈ Z,

bkx
C c, otherwise.

It is easy to see that this function is not maximal (for k = 2 and x = C/2, fk
V B,1(

C
2 ) + fk

V B,1(
C
2 ) =

k
2 − 1 + k

2 − 1 < k − 1 = fk
V B,1(C)). Using Theorem 1 and function fk

V B,1, we derive the following
new DFF fk

V B,2 which is maximal. Hence, no dominance relation links the new fk
V B,2 with fk

FS,1. Let
k ∈ {2, . . . , C}.

9



Proposition 6. The following function is a maximal DFF:

fk
V B,2 : [0, C] → [0, 2k − 2]

x 7→





2k − 2, for C − C
k ≤ x ≤ C,

2
⌊

kx
C

⌋
, for C

2 < x < C − C
k ,

k − 1, for x = C
2 ,

2× ⌈
kx
C

⌉− 2, for C
k < x < C

2 ,

0, for 0 ≤ x ≤ C
k .

Proof. Function fk
V B,1 is superadditive [28]. By virtue of Theorem 1, function fk

V B,2 is maximal and,
hence, it dominates fk

V B,1.

4.5 Burdett and Johnson [7]

In [7], Burdett and Johnson propose a function defined for rational values. When valid inequalities are
considered, the data we have to deal with are often rational. If one wants to use this function for bounding
(where data are in general integer), one can multiply the initial values by a rational constant. For a given
value x, let rx be the fractional part of x. The function of Burdett and Johnson is given next.

fBJ,1 : [0, C] → [0, bCc]

x 7→ bxc+ max
{

0,
rx − rC

1− rC

}
.

Any value α 6= 1 can replace rC in this function, but it appears [27] that the stronger inequality is
obtained when α = rC . If rC = 0, the function is equal to the identity function. In [27], the authors show
that this function is superadditive. An alternative immediate proof of superadditivity derives directly
from Lemma 1.

It is shown in [27] that this function is superadditive and nondecreasing. The reader can check that
it is also symmetric.

Proposition 7. Function fBJ,1 is a maximal DFF.

We give below the expression of the discrete version of fBJ,1. As the initial data are integer, directly
applying the function would lead to the identity. Consequently, all values are divided by an integer λ
before the function is applied. The multiplier used should not be a divider of C, otherwise the function
will not lead to improved results. To simplify the notation, we introduce ϕ = λ− C mod λ.

fλ
BJ,1 : [0, C] → [0,

⌊
C

λ

⌋
ϕ]

x 7→
{⌊

x
λ

⌋
ϕ, if x mod λ ≤ C mod λ,⌊

x
λ

⌋
ϕ + x mod λ− C mod λ, otherwise .

4.6 Letchford and Lodi [24]

Letchford and Lodi [24] propose another way of strengthening Chvátal-Gomory cuts [13] and Gomory
fractional cuts [22] in linear programs. In the remainder, we suppose that the fractional part of C is
such that rC > 0. In [24], the authors do not precise that their improvement is based on a dual-feasible
function. In this paper, we explicitly formulate the dual-feasible function that underlies their method.
As fBJ,1, it is based on Lemma 1.

Proposition 8. Let ψ be equal to d 1
rC
e − 1. The following function is a DFF.

fLL,1 : [0, C] → [0, (ψ + 1)bCc]

x 7→ (ψ + 1)bxc+ max
{

0,

⌈
rx − rC

1− rC
ψ

⌉}
.

10



Clearly this function cannot dominate fBJ,1, which is maximal, but it may improve the results for some
instances, as we will see in Section 5. As we show in Proposition 9, the superadditivity is due to Lemma
2. In the following proof, we use the fact that dx + ye = x + dye if x is integer, and the fact that
dxe+ dye ≤ dx + ye+ 1 for any x and y.

Proposition 9. Function fLL,1 implicitly used by Letchford and Lodi [24] is superadditive.

Proof. We use Lemma 1 to show this result. (ψ + 1) × x plays the role of f and max
{

0,
⌈

x−rC

1−rC
ψ

⌉}
is

the function g of the lemma.
First we prove that both functions are superadditive. For f(x) = (ψ + 1)× x the result is immediate.

For g(x) = max
{

0,
⌈

x−rC

1−rC
ψ

⌉}
, we use Lemma 2. By replacing ψ by its value in

⌈
x−rC

1−rC
ψ

⌉
, we obtain⌈

x−rC

1−rC
d 1

rC
− 1e

⌉
. This is equal to

⌈
x

1−rC
d 1

rC
− 1e − rC

1−rC
d 1

rC
− 1e

⌉
. The constant rC

1−rC
d 1

rC
−1e is greater

than rC

1−rC

1−rC

rC
, which is equal to one. Thus by virtue of Lemma 2, g(x) is superadditive.

Now we verify that the condition of Lemma 1 is verified. For all x, f(x + 1) + f(x) = (ψ + 1)x −
(ψ + 1)(x− 1) = ψ + 1. This means that the value v∗ is ψ + 1. For all y, y′ ∈ [0, 1] such that y + y′ > 1,
g(y + y′+ 1) =

⌈
y+y′−1−rC

1−rC
ψ

⌉
=

⌈
y+y′−1+rC−rC−rC

1−rC
ψ

⌉
=

⌈
y−rC+y′−rC

1−rC
ψ

⌉
−ψ. This is valid since ψ ∈ N.

We also have g(y)+g(y′)− (ψ +1) =
⌈

y−rC

1−rC
ψ

⌉
+

⌈
y′−rC

1−rC
ψ

⌉
−ψ−1 ≤

⌈
y−rC+y′−rC

1−rC
ψ

⌉
−ψ. Consequently,

using Lemma 1, we proved that fLL,1 is superadditive.

Function fLL,1 is not maximal, since there are cases where it is not symmetric.

Proposition 10. Function fLL,1 used implicitly by Letchford and Lodi [24] is not a maximal DFF.

Proof. Consider a size of bin equal to 10/3. In this case, ψ = d1/(1/3)e − 1 = 2. We also have f(C) =
(2+1)b10/3c = 9. Now we compute f(C/2)+f(C/2) = 2×f(5/3) = 2× (3b5/3c+max{0, d 2/3−1/3

1−1/3 ψe}).
This is equal to 2× (3 + d1e) = 8 < 9. Consequently f(C) > f(C/2) + f(C/2).

This means that one can propose an improved version of this function by applying Theorem 1.

Proposition 11. The following function is a maximal DFF, and dominates fLL,1.

fLL,2 : [0, C] → [0, 2(ψ + 1)bCc]

x 7→





2(ψ + 1)bxc+ 2 max
{

0,
⌈

rx−rC

1−rC
ψ

⌉}
, if x < C/2,

(ψ + 1)bCc, if x = C/2,

2fLL,1(C)− 2fLL,1(C − x), if x > C/2.

Proof. We prove in Proposition 9 that fLL,1 is superadditive. By virtue of Theorem 1, fLL,2 is maximal.
It dominates fLL,1 by construction.

Note that Dash and Günlük [15] have proved that ψ can be replaced in fLL,1 by any integer value k
greater than ψ. We will use fk

LL,1 for this extension.
For the discrete version of fk

LL,2, we consider an integer value of C, and we divide the values of the da-
tum by an integer value λ that is not a divisor of C. Let k ≥ d λ

C mod λe−1 and θ = dx mod λ−C mod λ
λ−C mod λ ke.

The discrete version of fk
LL,2 is given next.

fk,λ
LL,2 : [0, C] → [0, 2(k + 1)bC

λ
c]

x 7→





2
⌊

x
λ

⌋
(k + 1), if x < C/2 and x mod λ ≤ C mod λ,

2
⌊

x
λ

⌋
(k + 1) + 2θ, if x < C/2 and x mod λ > C mod λ,

(k + 1)bC
λ c, if x = C/2,

2(k + 1)bC
λ c − 2fk,λ

LL,1(C − x), if x > C/2.

11



4.7 Dash and Günlük [15]

A particular case of the so-called extended 2-step Mixed-Integer Rounding (MIR) inequalities of Dash
and Günlük [15] leads to a cut that can be obtained by applying a MDFF. This function also dominates
fk

LL,1, yet it is not equal to fk
LL,2. Again, we suppose that the fractional part of C is such that rC > 0.

Proposition 12. Let k be an integer greater than or equal to d 1
rC
e−1. The following function is a DFF.

fk
DG,1 : [0, C] → [0, (k + 1)bCc]

x 7→
{

(k + 1)bxc+ (k + 1) rx−rC

1−rC
if k 1−rx

1−rC
∈ N and rx > rC ,

(k + 1)bxc+ max
{
0,

⌈
rx−rC

1−rC
k
⌉}

, otherwise .

Now we show that this function is maximal, since it is obtained from fk
LL,1 using Theorem 2. For this

purpose, we have to show the three following results (Propositions 13, 14 and 15), which correspond with
the three conditions of Theorem 2.

We use the same notation as in Theorem 2 : I2 is the set of values such that k 1−rx

1−rC
∈ N and rx > rC ,

and I1 is the set of remaining values. We also denote g the function defined for x ∈ I2 as follows:
g(x) = (k + 1)bxc+ (k + 1) rx−rC

1−rC
. Function fk

LL,1 will play the role of function f .
Note that in the remainder, we use several times the following transformation: bx− yc = x−dye and

dx− ye = x− byc when x is integer.
Note also that for any x ∈ I2, since k 1−rx

1−rC
∈ N and rx > rC , we have k 1−rC

1−rC
− k 1−rx

1−rC
∈ N, and then

k rx−rC

1−rC
∈ N.

Proposition 13. For any value x in I2, fk
LL,1(x) ≤ g(x) ≤ lim

ε→0+
fk

LL,1(x + ε).

Proof. First we prove that for x ∈ I2, fk
LL,1(x) ≤ g(x). If x ∈ I2, since rx > rC and k rx−rC

1−rC
∈ N,

fk
LL,1(x) = (k + 1)bxc+ rx−rC

1−rC
k. Since in this case, rx−rC

1−rC
k ≤ (k + 1) rx−rC

1−rC
, we obtain fk

LL,1(x) ≤ g(x).

For any value x of I2, lim
ε→0+

fk
LL,1(x + ε) = lim

ε→0+
[(k + 1)bx + εc+

⌈
rx+ε−rC

1−rC
k
⌉
] = lim

ε→0+
[(k + 1)bx + εc+

⌈
rx−rC+ε

1−rC
k
⌉
]. Since k rx−rC

1−rC
∈ N, we obtain lim

ε→0+
[(k+1)bx+εc+ rx−rC

1−rC
k+

⌈
ε

1−rC

⌉
] = (k+1)bxc+ rx−rC

1−rC
k+1.

Since 0 ≤ rx−rC

1−rC
≤ 1, rx−rC

1−rC
k + 1 ≥ rx−rC

1−rC
(k + 1) thus g(x) ≤ lim

x→0+
fk

LL,1(x) when x ∈ I2.

Proposition 14. If x ∈ I2, y ∈ I2, and x + y ∈ I2, g(x) + g(y) ≤ g(x + y).

Proof. We have to prove that bxc+ rx−rC

1−rC
+ byc+ ry−rC

1−rC
≤ bx + yc+ rx+y−rC

1−rC
.

If rx + ry < 1, bxc+ byc = bx + yc and rx + ry = rx+y, so the proof is immediate.
If rx +ry ≥ 1, g(x)+g(y) = bxc+ rx−rC

1−rC
+byc+ ry−rC

1−rC
= bx+yc−1+ rx+y+1−2rC

1−rC
= bx+yc+ rx+y−rC

1−rC
.

Proposition 15. When x ∈ I2, x + y ∈ I2 and y ∈ I1, g(x) + fk
LL,1(y) ≤ g(x + y).

Proof. We decompose the proof into two cases.

1. If ry ≤ rC , only the case rx + ry < 1 is possible, otherwise rx+y = rx + ry − 1 and thus we would
have rx + ry − 1 > rC , which is not possible, since rx < 1 and ry ≤ rC .

In this case, fk
LL,1(y) = (k +1)byc. Consequently, we have to show that (k +1)bxc+(k +1) rx−rC

1−rC
+

(k + 1)byc ≤ (k + 1)bx + yc + (k + 1) rx+y−rC

1−rC
. Since in this case bxc + byc = bx + yc, it can be

rewritten as rx−rC

1−rC
≤ rx+y−rC

1−rC
, which is true, since rx+y > rx by assumption.

2. If ry > rC , once again only the case rx + ry < 1 is possible. Suppose rx + ry ≥ 1. By initial
assumption, y ∈ I1: since ry > rC , it would mean that k

1−ry

1−rC
6∈ N and k

1−rx+y

1−rC
= k

1−(rx+ry−1)
1−rC

=
k 1−rx

1−rC
+ k

1−ry

1−rC
. This contradicts the initial assumption that k

1−rx+y

1−rC
∈ N and k 1−rx

1−rC
∈ N.

In this case, the inequality (k+1)bxc+(k+1) rx−rC

1−rC
+(k+1)byc+max{0, d ry−rC

1−rC
ke} ≤ (k+1)bx+

yc + (k + 1) rx+y−rC

1−rC
leads to (k + 1) rx−rC

1−rC
+ d ry−rC

1−rC
ke ≤ (k + 1) rx+ry−rC

1−rC
. This is equivalent to

12



⌈
k

ry−rC

1−rC

⌉
≤ (k + 1) ry

1−rC
. We have (k + 1) ry

1−rC
= k

ry−rC

1−rC
+ k rC

1−rC
+ ry

1−rC
. Since ry > rC , this

is greater than k
ry−rC

1−rC
+ (k + 1) rC

1−rC
. By definition, k is greater than 1

rC
− 1, thus the previous

expression is greater than k
ry−rC

1−rC
+ 1

rC

rC

1−rC
= k

ry−rC

1−rC
+ 1

1−rC
> k

ry−rC

1−rC
+ 1 ≥ dk ry−rC

1−rC
e.

Proposition 16. fk
DG,1 is a superadditive and nondecreasing function.

Proof. We prove this result using Theorem 2. For fk
DG,1, function f of Theorem 2 is function fk

LL,1, and
function g is (k + 1)bxc+ (k + 1) rx−rC

1−rC
. I1 and I2 are defined as above.

We have proved that fk
LL,1 is superadditive and nondecreasing. Now we have to prove that fk

LL,1

is piecewise right-continuous on I1. If x ∈ I1 and rx ≤ rC , lim
ε→0+

fk
LL,1(x + ε) = lim

ε→0+
(k + 1)bx + εc =

(k + 1)bxc = fk
LL,1(x). If x ∈ I1 and rx > rC , lim

ε→0+
fk

LL,1(x + ε) = lim
ε→0+

[(k + 1)bx + εc + d rx+ε−rC

1−rC
ke].

By definition of I1, and since rx > rC , we know that rx−rC

1−rC
k 6∈ N. Consequently, this is equal to

(k + 1)bxc+ d rx−rC

1−rC
ke = fk

LL,1(x).
The three conditions of Theorem 2 are shown in the Propositions 13, 14 and 15.

Proposition 17. Function fk
DG,1 is symmetric and hence is a MDFF.

Proof. First we show that if x ∈ I2, then C − x ∈ I2. If rx > rC , rx + rC−x = rC + 1 and thus
rC−x > rC . We also have k rC−x−rC

1−rC
= k 1+rC−rx−rC

1−rC
= k + k rC−rx

1−rC
. Since k is integer, k rx−rC

1−rC
∈ N

implies k rC−x−rC

1−rC
∈ N. Consequently, the proof consists of two cases, depending on the value x only.

1. x ∈ I1 (and C − x ∈ I1).
If rx + rC−x < 1, rx < rC and rC−x ≤ rC . In this case, fk

LL,1(x) + fk
LL,1(C − x) = (k + 1)bxc +

(k + 1)bC − xc = (k + 1)bCc.
If rx+rC−x ≥ 1, rx+rC−x = rC +1, rx > rC and rC−x > rC . In this case, fk

LL,1(x)+fk
LL,1(C−x) =

(k + 1)bxc + d rx−rC

1−rC
ke + (k + 1)bC − xc + d rC−x−rC

1−rC
ke. This is equal to (k + 1)bCc − (k + 1) +

d rx−rC

1−rC
ke+ d rC−rx+1−rC

1−rC
ke = (k +1)bCc− (k +1)+k + d rx−rC

1−rC
ke+ d rC−rx

1−rC
ke. Now we use the fact

that for any value a 6∈ Z, dae+ d−ae = 1. By assumption rC−rx

1−rC
k is not integer, thus the expression

is equal to (k + 1)bCc − (k + 1) + k + 1 = fk
LL,1(C).

2. x ∈ I2 (and C − x ∈ I2).
In this case, rx > rC , rC−x > rC , and rx+rC−x = rC+1. We have g(x)+g(C−x) = (k+1)bxc+(k+
1) rx−rC

1−rC
+(k+1)bC−xc+(k+1) rC−x−rC

1−rC
. This is equal to (k+1)bCc−(k+1)+(k+1) rx−rC

1−rC
+(k+

1) rC−rx+1−rC

1−rC
= (k+1)bCc−(k+1)+(k+1) rx−rC

1−rC
+(k+1) rC−rx

1−rC
+(k+1) = (k+1)bCc = fk

LL,1(C).

Since Proposition 16 states that fk
DG,1 is nondecreasing and superadditive, it is a MDFF.

Function fk
LL,2 and fk

DG,1 are not the same. Consider any value x of I2 less than C/2. In this case
fk

LL,2(x) = fk
LL,1(x), and fk

DG,1(x) > fk
LL,1(x). Function fk

LL,2 is obtained using Theorem 1, which only
modifies images of values greater than or equal to C/2. Function fk

DG,1 is obtained by applying Theorem
2.

Finally, we report the discrete formulation of fk
DG,1. Let k and θ defined as in the definition of function

fk,λ
LL,2. We keep the notation ϕ = λ− C mod λ introduced above. Value x is in I2 if (k(λ− x mod λ))

mod ϕ = 0 and x mod λ > C mod λ.

fk,λ
DG,1 : [0, C] → [0, ϕ(k + 1)bC

λ
c]

x 7→





⌊
x
λ

⌋
(k + 1)ϕ, if x mod λ ≤ C mod λ,⌊

x
λ

⌋
(k + 1)ϕ + θϕ, if x mod λ > C mod λ,⌊

x
λ

⌋
(k + 1)ϕ + (k + 1)(x mod λ− C mod λ), if x ∈ I2.

13



4.8 Summary

In this paragraph, we sum up the different results stated in the current section. We recall several kind of
results: dominance, maximality, and the different techniques underlying each family of functions.

In Table 1, we report a classification of the different functions. For each function, we recall the paper
in which context it was proposed (t.p. means that it is proposed for the first time in the present paper, and
’-’ means that it is a trivial DFF). We also report the type of application for which it has originally been
designed (lb for lower bounding, and cuts for improved valid inequalities). Then we give informations for
each function: if it is a MDFF, if it explicitly uses Lemmas 1 and 2, or Theorem 1.

Functions
⌊

x
k

⌋
(k 6= 1), fk

FS,2, fk
LL,1 and fk

V B,1 are not maximal, whereas fk
BM,1 is almost maximal.

Only the image of C
2 makes the latter non-maximal. All the other functions are maximal. Among all the

functions considered, only fk
FS,2 is not superadditive.

Functions fk
BJ,1, fk

LL,1 and its improved versions fk
DG,1 fk

LL,2 are the only ones to use Lemma 1. Note
that these functions were originally proposed to derive cuts, which can explain the fact that the fractional
part is treated apart.

Lemma 2 is used to modify the fractional part in fk
LL,1, fk

LL,2 and fk
DG,1. It underlies function fk

V B,1,
and the function that dominates it, fk

V B,2. Function fk
FS,1 does not use explicitly Lemma 2, but its

structure is close to it. As soon as the value f(x) returned by a given function f is dependent on the
integrity of x, we consider that function f uses Lemma 2.

Theorem 1 is used by fk
CCM,1, fk

LL,2 and fk
V B,2, and almost by fk

BM,1.
Theorem 2 is used by fk

FS,1 and fk
DG,1 to obtain a maximal function, and by fk

V B,1 to obtain a
non-maximal function.

Function Paper Application MDFF lem. 1 lem. 2 thm. 1 thm. 2

identity - - yes no no no no

fλ
0 [16] lb yes no no no no
bx

k
c - - no no no no no

fk
FS,2 [16] lb no no no no no

fk
BM,1 [6] lb almost no no almost no

fk
CCM,1 [9] lb yes no no yes no

fk
V B,1 [28] cuts no no yes no yes

fk
FS,1 [16] lb yes no almost no yes

fk
BJ,1 [7] cuts yes yes no no no

fk
LL,1 [24] cuts no yes yes no no

fk
DG,1 [15] cuts yes yes yes no yes

fk
LL,2 t.p. - yes yes yes yes no

fk
V B,2 t.p. - yes no yes yes no

Table 1: Summary of the properties of the functions analyzed in this paper

In Section 5, we evaluate the gap between dominated functions and the functions that dominate them,
and we compare the effectiveness of the maximal functions.

5 Computational experiments

5.1 Bin-packing instances

In this section, we compare the different DFF analyzed in this paper against several types of instances
for the one-dimensional bin-packing problem generated in a classical way. A bin packing instance is a
pair (C, I), where C ∈ N+ is the size of the bin, and I a set of n items i, each of size ci ∈ N.

We use the functions without any kind of preprocessing, or additional optimization methods. The
function is applied to the instance, and then the continuous lower bound L0 is computed for the instance
obtained. L0 = d∑i∈I ci/Ce.

The instances used are computed using the method described in [26]. We generated problems with
a bin of size 100, and n items with sizes in the interval [min, 100]. Several values of n (100, 500, 1000)

14



and min (1, 20, 35) are used. For each pair of values, we generated 1000 instances. For instances I, II
and III, the values of min are respectively 1, 20 and 35. Instances 1, 2, 3 are respectively related to
n = 1000, n = 100 and n = 500.

For each family of functions and for each set of instances (Set), we report the sum of the lower bounds
obtained for the 1000 instances (Sum), the number of times each bound is equal to the best bound (Best),
and the number of times each bound is the only one to lead to the best bound (Only).

In the last subsection, we compare the DFF in terms of the strength of the valid inequalities that
they generate for the PMP.

In order to evaluate the quality of the bounds, we first report the results of the continuous bound
(id), and the bound obtained using fλ

0 . These results are listed in Table 2. Column Only is reported for
fλ
0 only, as it is always at least as good as the identity.

Set Sum Best Only

id fλ
0 id fλ

0 fλ
0

I-1 500893 507410 89 1000 911
I-2 50508 52500 180 1000 820
I-3 250644 255245 88 1000 912
II-1 595629 626215 0 1000 1000
II-2 59961 64378 0 1000 1000
II-3 298112 314692 0 1000 1000
III-1 670634 767930 0 1000 1000
III-2 67522 78456 0 1000 1000
III-3 335502 385163 0 1000 1000

Table 2: Comparing the identity function with fλ
0

The bound obtained with fλ
0 for all valid values of λ is equal to the L2 bound of Martello and Toth

[26]. In the sequel, we will emphasize (in bold) the cases in which a function returns bounds that are
better than L2 in average.

5.1.1 Influence of maximality on the lower bounds

In Tables 3, 4 and 5, we compare the results obtained by some functions before and after applying tech-
niques to obtain maximal functions. The purpose is to give an idea of the strength of each improvement
for these functions. In the three tables, only maximal functions have a column Only.

In Table 3, we compare the three versions of the rounding functions proposed by Fekete and Schepers
[16] (fk

FS,2), Boschetti and Mingozzi [5] (fk
BM,1) and Carlier et al. [9] (fk

CCM,1). In Table 4, we report
results of Fekete and Schepers (fk

FS,1) [16], Vanderbeck (fk
V B,1)[28], and of the new function fk

V B,2

proposed in this paper. Finally, we compare fk
LL,1, fk

LL,2 and fk
DG,1 in Table 5.

Set Sum Best Only

fk
FS,2 fk

BM,1 fk
CCM,1 fk

FS,2 fk
BM,1 fk

CCM,1 fk
CCM,1

I-1 507156 507688 507811 760 907 1000 93
I-2 52314 52507 52534 819 973 1000 27
I-3 255023 255427 255506 733 924 1000 76
II-1 626165 626531 626712 757 884 1000 116
II-2 64303 64394 64434 878 960 1000 40
II-3 314649 314908 315027 761 895 1000 105
III-1 768816 768816 768816 1000 1000 1000 0
III-2 78624 78624 78624 1000 1000 1000 0
III-3 385782 385782 385782 1000 1000 1000 0

Table 3: Comparing functions fk
FS,2, fk

BM,1 and fk
CCM,1

As expected, maximal functions lead to improved results compared to non-maximal functions. What
is more surprising is the fact that function fk

CCM,1 is strictly better than fBM,1 for many test cases,

15



Set Sum Best Only

fk
V B,1 fk

FS,1 fk
V B,2 fk

V B,1 fk
FS,1 fk

V B,2 fk
FS,1 fk

V B,2

I-1 504425 506153 504704 466 966 546 454 31
I-2 51797 52095 51851 713 988 766 234 10
I-3 253341 254397 253555 488 968 576 424 32
II-1 621066 624635 622564 255 941 402 598 59
II-2 63341 63859 63512 511 980 671 329 20
II-3 311658 313604 312528 287 936 481 519 64
III-1 758363 763392 758363 236 1000 236 764 0
III-2 76926 77472 76926 556 1000 556 444 0
III-3 380027 382437 380027 339 1000 339 661 0

Table 4: Comparing functions fk
V B,1, fk

FS,1 and fk
V B,2

Set Sum Best Only

fk
LL,1 fk

LL,2 fk
DG,1 fk

LL,1 fk
LL,2 fk

DG,1 fk
LL,2 fk

DG,1

I-1 504653 504675 504676 971 992 993 7 8
I-2 51619 51628 51625 991 1000 997 3 0
I-3 253292 253312 253314 970 990 992 8 10
II-1 622876 622876 622876 1000 1000 1000 0 0
II-2 63404 63404 63404 1000 1000 1000 0 0
II-3 312543 312543 312543 1000 1000 1000 0 0
III-1 750279 750279 750279 1000 1000 1000 0 0
III-2 75426 75426 75426 1000 1000 1000 0 0
III-3 375266 375266 375266 1000 1000 1000 0 0

Table 5: Comparing functions fk
LL,1, fk

LL,2 and fk
DG,1

although it only modifies the image of C
2 . This can be explained by the fact that the instances are

generated randomly, and thus items of size C
2 may appear several times in an instance.

Concerning the improvements on fk
V B,1, an interesting fact is that the results are improved by a wide

range when fk
FS,1 is used, although fk

V B,2 only leads to some improvements. Nevertheless fk
V B,2 can be

better than fk
FS,1 in several cases.

Compared to fk
LL,1, the number of improved values when fk

LL,2 or fk
DG,1 are used is small. This

means that fk
LL,1 is almost maximal (i.e. there are only a few number of pairs (x, C − x) that are not

symmetric).

5.1.2 Comparison between the different classes of DFF

From the previous tables, we can see that only the bounds based on the rounding function (fk
BM,1 and

fk
CCM,1) are better than fλ

0 on average. This means that if one wants to use an unique function, fk
CCM,1

would be this one. But if one is looking for the best results, he will have to use all the maximal DFF
described in this paper.

We sum up the results obtained by all the functions described in this paper in Table 6. We report
respectively the number of times the functions lead to the best bound, and the number of times a function
is the only one to return the best bound. The functions chosen are those that are not dominated by any
other functions. The columns Sum are not reported, as they are already reported in previous tables.

Functions fλ
0 and fk

CCM,1 yield apparently the best results in average for these instances. Note that
each surveyed maximal function leads at least once to a bound that is not attained by the other functions.

5.1.3 Composing functions

We computed the bounds yielded by the functions obtained by composing fλ
0 or fk

CCM,1 with the functions
tested above. All relevant values of λ are used, so the complexity of the bounds is larger, and consequently

16



Set Best Only

fλ
0 fk

FS,1 fk
V B,2 fk

CCM,1 fk
BJ,1 fk

LL,2 fk
DG,1 fλ

0 fk
FS,1 fk

V B,2 fk
CCM,1 fk

BJ,1 fk
LL,2 fk

DG,1

I-1 548 345 162 826 173 267 267 12 12 2 228 5 2 0
I-2 865 558 399 915 416 453 453 15 3 0 57 6 0 0
I-3 654 378 196 846 229 301 306 25 8 2 162 3 1 1
II-1 513 283 83 822 103 227 227 22 11 4 275 7 0 0
II-2 806 469 267 870 346 415 415 16 7 3 66 5 0 0
II-3 566 308 110 815 140 271 271 31 20 1 204 6 0 0
III-1 515 198 0 1000 0 0 0 0 0 0 485 0 0 0
III-2 826 342 130 1000 58 60 60 0 0 0 139 0 0 0
III-3 577 200 0 1000 0 0 0 0 0 0 423 0 0 0

Table 6: Summary

the computing time is also significantly larger. As f1
0 is equal to the identity function, the results are

always larger than or equal to the previous results. In the subsequent tables columns Only have a
different meaning. They now report the number of times each function is the only best, and better than
the corresponding non-composed function. The results are reported in Tables 7 and 8, we compare these
compositions with the compositions obtained using fλ

0 . We did not try to compose fk
CCM,1 with itself, as

it cannot lead to improved results (see [14]). We do not report results of fk
DG,1, since it does not improve

the results obtained using fk
LL,2.

Set Sum

comp. with fλ
0 comp. with fk

CCM,1

fk
CCM,1 fk

FS,1 fk
BJ,1 fk

V B,2 fk
LL,2 fk

FS,1 fk
BJ,1 fk

V B,2 fk
LL,2

I-1 507956 508000 507923 508015 508091 507954 507903 507989 507844
I-2 52617 52622 52599 52642 52645 52601 52572 52612 52540
I-3 255625 255652 255601 255666 255701 255634 255582 255635 255531
II-1 626958 626976 626869 626984 627076 626900 626813 626924 626725
II-2 64552 64578 64545 64589 64609 64524 64475 64540 64478
II-3 315199 315243 315155 315242 315330 315186 315107 315190 315076
III-1 768816 768816 768816 768816 768816 768816 768816 768816 768444
III-2 78635 78635 78635 78635 78635 78635 78635 78633 78397
III-3 385782 385782 385782 385782 385782 385782 385782 385782 385543

Table 7: Compositions: sum of the bound for each function

Set Best/Only

comp. with fk
0 comp. with fk

CCM,1

fk
CCM,1 fk

FS,1 fk
BJ,1 fk

V B,2 fk
LL,2 fk

FS,1 fk
BJ,1 fk

V B,2 fk
LL,2

I-1 825 3 849 2 796 1 855 8 927 22 821 1 791 0 840 1 749 6
I-2 938 2 943 0 920 0 963 4 966 5 922 0 893 0 933 0 862 1
I-3 858 4 883 0 837 2 894 8 928 13 870 1 826 0 864 0 781 2
II-1 826 5 831 0 763 2 824 5 917 33 799 4 763 0 799 0 692 1
II-2 907 2 933 1 900 1 944 7 964 6 879 0 835 0 895 0 835 0
II-3 809 3 843 0 772 1 837 7 924 27 802 3 749 0 804 0 715 2
III-1 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 771 0
III-2 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 998 0 802 0
III-3 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 815 0

Table 8: Compositions: number of times a function leads to the best bound

Composing these functions with fλ
0 leads to improved results for several cases. Each function returns

the best lower bound for more than 90% of the instances. An interesting fact is that when composed

17



with fλ
0 , fk

CCM,1 is no more the most interesting function. Now the best bounds seem to be obtained
when composing fk

LL,2 with fλ
0 .

The computing time entailed by the composition is far larger than the time needed to apply one
function only. It takes 4.28 seconds to a computer with a dual core 1.2GHz processor to compute a lower
bound for each of the 1000 instance of a benchmark for fCCM,1 and 156.28 seconds for the composition
of f0 and fCCM,1 on the same computer.

Composing a function with fk
CCM,1 is less interesting than with fλ

0 . This can be due to the fact
that the instance obtained after applying fk

CCM,1 has a smaller number of different values, and cannot be
improved by a wide range, whereas an instance modified by fλ

0 may have many different values. However,
some bounds are improved using these compositions.

5.1.4 Summary

It transpires that if one has to choose one function to compute lower bounds, fk
CCM,1 is the best choice.

All maximal functions lead to a bound that is not attained by the mean of any of the other functions.
Consequently if one wants to obtain as strong bounds as possible, one should use all families of maximal
functions described in this paper.

Non-maximal functions may lead to interesting results, but each time we used the corresponding
maximal function instead, the results were strictly improved for several instances. As the computational
effort is the same, there is no reason why one would use a non-maximal function.

Composing the functions helps improving the results, at the expense of a far larger computational
effort. Composing a function with fλ

0 is generally more interesting than composing a function with
fk

CCM,1.

5.2 Strengthening the column generation model for the PMP with DFF

To evaluate the DFF in terms of the strength of the corresponding inequalities they generate, we performed
a set of computational experiments on random PMP instances. In particular, we compare the results
obtained using the method of Vanderbeck described in [28] against the other DFF analyzed in this paper.

All the valid inequalities are derived from the constraints of a column generation model introduced
by Vanderbeck in [28], which states as follows.

min
∑

p∈P

ub(Pp)∑
n=1

λpn (8)

s.t.
∑

p∈P

ub(Pp)∑
n=1

naipλpn = bi, i = 1, . . . , m, (9)

∑

p∈P

ub(Pp)∑
n=1

nλpn ≤ zCSP , (10)

λpn ∈ {0, 1}, p ∈ P, n = 1, . . . , ub(Pp). (11)

The whole set of patterns is denoted by P , with Pp being the pth pattern in P . In this model, each
column represents a pattern Pp replicated n times (n stands for the multiplicity of the pattern). The
binary decision variables λpn indicate if a pattern Pp with multiplicity n is used or not. The constraints
of the model are related to the demand bi for each item i, and to the number of rolls that can be used
(zCSP is usually equal to the minimum number of rolls required to cut all the items). Finally, ub(Pp)

is the maximum multiplicity allowed for pattern Pp, and it is equal to min
i=1,...,m

⌊
bi

aip

⌋
. Coefficients aip

represent the number of items i in pattern Pp.
The bound of this model is very weak. Hence, Vanderbeck [28] proposed to use the set of superadditive

functions analyzed at the beginning of Section 4.4. He proved that the resulting valid inequalities were
stronger than the rank 1 Chvátal-Gomory cuts. However, as shown in [2], they are not maximal. One
of the advantages of using DFF for the PMP (and other problems) is that they can generate good cuts

18



even when applied directly to the original coefficients of the column generation model. This almost
guarantees that the cutting plane generation procedure will not induce any major complication to the
pricing subproblems. Furthermore, the separation procedures are generally fast. In [2], some very simple
linear combinations were tried producing a real improvement on the linear bound. Indeed, when we
know how a specific DFF works, it is usually not difficult to anticipate a linear combination that is likely
to produce better cuts. Broadly speaking, the larger the left-hand side coefficients and the smaller the
right-hand side coefficient of a particular constraint, the stronger will be the cut generated by many DFF
from it. For example, instead of generating cuts from (10), we can derive cuts from

∑

p∈P

ub(Pp)∑
n=1

(n− 1)λpn ≤ zCSP − lbPMP , (12)

where lbPMP stands for the best known lower bound for a particular instance of the PMP. Constraint
(12) consists in the combination of (10) with the following trivial constraint:

∑

p∈P

ub(Pp)∑
n=1

λpn ≥ lbPMP .

Following this principle, one can generate valid inequalities from DFF using the most appropriate con-
straints. For the PMP, cuts can be derived for example using the following valid waste constraint:

∑

p∈P

ub(Pp)∑
n=1

(W −
m∑

i=1

wiaip)λpn ≤ WzCSP −
m∑

i=1

wibi. (13)

where wi and W are the sizes of the items and the rolls, respectively.
For our experiments, we used a total of 500 instances divided in 10 groups of 50 instances. These

instances were generated using different numbers of items (n) and different intervals for the sizes of the
items ([min, 800]). The size of the roll (W ) is equal to 1000. The instances were generated using the
CUTGEN1 generator [19]. The following table describes each set of instances.

Set min W n

A-1 300 1000 200
A-2 300 1000 400
A-3 300 1000 600
A-4 300 1000 1200
B-1 100 1000 200
B-2 100 1000 400
B-3 100 1000 600
B-4 100 1000 1200
C-1 10 1000 200
C-2 10 1000 600

Table 9: Instances of PMP used

Tables 10, 11 and 12 summarize respectively the total value of the linear bounds obtained when a
specific DFF is used to generate valid inequalities, the number of times a particular DFF led to the best
linear bound for each set of instances and the number of times a DFF was the only one to lead to the
strongest linear program. In Table 10, the values in column cg correspond to the bounds obtained using
standard column generation without any additional valid inequality. Again, DFF that are dominated by
other DFF are not considered in Table 12. To generate valid cutting planes, the DFF were applied to
the demand constraints (9), to the constraint limiting the total number of rolls (10), and to the waste
constraint (13).

The first observation is that, whatever the DFF we choose, the column generation bound is always
improved. The other dominance results stated along the paper are also confirmed by these results: fk

CCM,1

is always better than fk
FS,2, while the cuts returned by fk

LL,2 dominate those given by fk
LL,1. For these

19



Set Sum

cg fk
V B,1 fλ

0 fk
BJ,1 fk

LL,1 fk
LL,2 fk

DG,1 fk
FS,2 fk

CCM,1 fk
FS,1 fk

V B,2

A-1 737.8 795.4 787.4 791.8 786.0 789.9 792.7 774.9 791.5 797.7 796.3
A-2 1363.0 1455.8 1453.9 1459.7 1450.8 1455.8 1461.6 1427.3 1461.9 1471.5 1469.4
A-3 739.7 831.8 809.6 820.2 817.4 820.3 822.5 778.4 810.5 831.9 832.1
A-4 1372.8 1543.7 1504.4 1526.1 1522.4 1527.1 1532.7 1444.5 1505.7 1546.5 1544.5
B-1 587.5 659.5 656.7 660.8 654.9 659.3 663.0 638.4 664.8 667.6 666.4
B-2 1086.5 1218.6 1205.4 1210.1 1200.0 1206.8 1213.5 1168.6 1212.8 1222.6 1220.1
B-3 608.0 718.5 694.7 704.5 702.4 705.8 710.9 661.1 696.0 720.4 719.2
B-4 1114.3 1306.7 1275.4 1292.4 1287.4 1292.7 1300.2 1203.9 1270.8 1310.6 1308.3
C-1 534.6 604.6 597.7 600.8 595.4 598.9 602.8 580.6 604.7 608.0 606.1
C-2 551.0 650.1 629.0 640.3 638.1 641.5 644.5 600.0 631.5 652.8 651.1

Table 10: Comparing the DFF in terms of total linear bounds

Set Best

fk
V B,1 fλ

0 fk
BJ,1 fk

LL,1 fk
LL,2 fk

DG,1 fk
FS,2 fk

CCM,1 fk
FS,1 fk

V B,2

A-1 18 6 10 4 7 12 2 18 42 20
A-2 2 1 2 0 2 2 0 12 37 10
A-3 16 1 4 4 4 5 1 5 44 26
A-4 4 0 1 0 0 0 0 0 47 10
B-1 2 2 6 2 2 5 1 19 33 14
B-2 6 0 3 1 1 3 0 15 34 11
B-3 7 1 2 0 2 0 0 2 44 12
B-4 0 2 2 2 3 0 0 0 43 9
C-1 7 3 5 4 4 6 1 20 33 12
C-2 5 0 1 0 3 1 0 0 43 11

Table 11: Summary: number of times each function leads to the strongest model

Set Only

fλ
0 fk

BJ,1 fk
LL,2 fk

DG,1 fk
CCM,1 fk

FS,1 fk
V B,2

A-1 0 1 0 0 7 18 0
A-2 1 0 0 0 11 28 1
A-3 0 0 0 0 2 21 4
A-4 0 1 0 0 0 39 2
B-1 0 1 0 0 13 20 3
B-2 0 1 0 0 12 23 3
B-3 1 1 1 0 1 34 2
B-4 0 0 1 0 0 38 4
C-1 0 0 0 0 14 24 2
C-2 0 0 1 0 0 36 6

Table 12: Summary: number of times each function is the only best

sets of instances, fk
FS,1 is the DFF that generate most regularly the strongest cutting planes. The linear

bounds obtained with this DFF are clearly better than those given by the dominated fk
V B,1, the DFF

proposed by Vanderbeck in [28]. For many instances, fk
CCM,1 is the only one to lead to the strongest

cuts, and in a non-negligible number of times, the best bound is obtained when the new fk
V B,2 is applied.

6 Concluding remarks

In this paper, we surveyed different classical dual-feasible functions used explicitly or not in the litera-
ture. A broad characterization and a computational comparison of these functions were performed. We

20



introduced frameworks that allow to derive and analyze DFF. Several functions hidden in cutting plane
generation procedures were formally defined and analyzed. Different properties and relations were stated
like maximality and dominance. New dominant functions were proposed. Better bounds and stronger
valid inequalities were obtained with these new functions, and with compositions of these functions.

From this paper, it transpires that using functions used, explicitly or not, in the integer programming
literature leads to improved lower bounds. The opposite methodology can also be used. Stronger valid
inequalities for integer programs can be derived using functions that have been defined originally to
compute lower bounds. For problems like the PMP, this strategy led to stronger relaxations that in turn
led to state-of-the-art linear lower bounds.

Acknowledgments

We would like to thank the anonymous referees for their constructive comments, which led to a clearer
presentation of the material.

We would also like to thank Dr. Jürgen Rietz for his valuable comments.
This work was partially supported by the Portuguese Science and Technology Foundation through

the postdoctoral grant SFRH/BPD/24139/2005 for François Clautiaux and the research project POS C
/ 57203 / EIA / 2004 for Cláudio Alves and José Valério de Carvalho.

References

[1] K. Aardal and R. Weismantel. Polyhedral combinatorics. Wiley, New York, 1997.

[2] C. Alves and J. M. Valério de Carvalho. A branch-and-price-and-cut algorithm for the pattern
minimization problem. RAIRO Operations Research (in press), 2008.

[3] R. Baldacci and M. Boschetti. A cutting plane approach for the two-dimensional orthogonal non
guillotine cutting stock problem. European Journal of Operational Research, 183:1136–1149, 2007.

[4] M. Boschetti. New lower bounds for the three-dimensional finite bin packing problem. Discrete
Applied Mathematics, 140:241–258, 2004.

[5] M. Boschetti and A. Mingozzi. The two-dimensional finite bin packing problem. Part I: New lower
bounds for the oriented case. 4OR, 1:27–42, 2003.

[6] M. Boschetti and A. Mingozzi. The two-dimensional finite bin packing problem. Part II: New lower
and upper bounds. 4OR, 1:135–147, 2003.

[7] C. A. Burdett and E. L. Johnson. A subadditive approach to solve linear integer programs. Annals
of Discrete Mathematics, 1:117–144, 1977.

[8] A. Caprara and M. Monaci. Bidimensional packing by bilinear programming. Mathematical Pro-
gramming (in press), 2007.

[9] J. Carlier, F. Clautiaux, and A. Moukrim. New reduction procedures and lower bounds for the
two-dimensional bin packing problem with fixed orientation. Computers and Operations Research,
34(8):2223–2250, 2007.

[10] J. Carlier and E. Néron. A new LP-based lower bound for the cumulative scheduling problem.
European Journal of Operational Research, 127:363–382, 2000.

[11] J. Carlier and E. Néron. On linear lower bounds for the resource constraint project scheduling
problem. European Journal of Operational Research, 149(2):314–324, 2003.

[12] J. Carlier and E. Néron. Computing redundant resources for the resource constrained project schedul-
ing problem. European Journal of Operational Research, 176(3):1452–1463, 2007.

21



[13] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math., 4:305–
337, 1973.

[14] F. Clautiaux. Bornes inférieures et méthodes exactes pour le problème de bin-packing en deux di-
mensions avec orientation fixe. PhD thesis, Université de Technologie de Compiègne, France, 2005.

[15] S. Dash and O. Günlük. Valid inequalities based on simple mixed-integer sets. Mathematical Pro-
gramming, 105:29–53, 2006.

[16] S. Fekete and J. Schepers. New classes of fast lower bounds for bin packing problems. Mathematical
Programming, 91:11–31, 2001.

[17] S. Fekete and J. Schepers. A general framework for bounds for higher-dimensional orthogonal packing
problems. Mathematical Methods of Operations Research, 60:311–329, 2004.

[18] M. R. Garey and D. S. Johnson. Computers and intractability, a guide to the theory of NP-
completeness. Freeman, New York, 1979.

[19] T. Gau and G. Waescher. CUTGEN1: A problem generator for the standard one-dimensional cutting
stock problem. European Journal of Operational Research, 84:572–579, 1995.

[20] P. Gilmore and R. Gomory. A linear programming approach to the cutting stock problem. Operations
Research, 9:849–859, 1961.

[21] P. Gilmore and R. Gomory. A linear programming approach to the cutting stock problem - part II.
Operations Research, 11:863–888, 1963.

[22] R. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the American
Mathematical Society, 64:275–278, 1958.

[23] J. B. Lasserre. Integer programming, duality and superadditive functions. Contemporary Mathe-
matics, 374:139–150, 2005.

[24] A. N. Letchford and A. Lodi. Strengthening Chvátal-Gomory cuts and Gomory fractional cuts.
Operations Research Letters, 30:74–82, 2002.

[25] G. S. Lueker. Bin packing with items uniformly distributed over intervals [a,b]. In Proc. of the
24th Annual Symposium on Foundations of Computer Science (FOCS 83), pages 289–297. IEEE
Computer Society, 1983.

[26] S. Martello and P. Toth. Knapsack problems - Algorithms and Computer Implementation. Wiley,
Chichester, 1990.

[27] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization, 1998.

[28] F. Vanderbeck. Exact algorithm for minimizing the number of setups in the one-dimensional cutting
stock problem. Operations Research, 46(6):915–926, 2000.

[29] G. Wäscher, H. Haussner, and H. Schumann. An improved typology of cutting and packing problems.
European Journal of Operational Research, 183:1109–1130, 2007.

22


