

A local search heuristic based on column generation
applied to the binary multicommodity flow problem

Filipe Alvelos, Departamento de Produção e Sistemas, Universidade do Minho, Portugal

J. M. Valério de Carvalho, Departamento de Produção e Sistemas, Universidade do Minho, Portugal

Abstract
In this paper, we apply a multi-start local search heuristic based on column generation to the binary
multicommodity flow problem. One solution is represented as a set of paths, one of each commodity. A
neighbor solution is obtained by selecting a different path for one commodity. We discuss and present
computational results for alternative ways of using primal and dual information from the linear
programming (restricted) master problem in constructing and evaluating heuristic integer solutions.
The local search heuristic, although described and tested for the binary multicommodity problem, can be
applied in general column generation models where the master variables are binary and there are convexity
constraints, since it does not depend on the subproblem structure.

Keywords: local search, column generation, multicommodity flows.

1 Introduction

In this paper, we introduce a heuristic procedure for obtaining integer solutions in column
generation models. The heuristic uses primal and dual information from the optimal
solution of a restricted master problem (RMP) in order to search the solution space and
can be easily incorporated in branch-and-price-and-cut algorithms. For a recent survey
about column generation, see [8]. Recent surveys on local search and on metaheuristics
can be found in [6, 11], respectively.
The heuristic was tested in the binary multicommodity flow problem (MFP). Other
designations for the binary MFP are: non-bifurcated routing problem, traffic placement
problem, single path routing problem, path selection problem or multiple source
unsplittable MFP. Most of those designations refer to communication problems. Other
applications, such as production planning and distribution / transportation may also be
considered, whenever a multicommodity flow model is used and the commodities cannot
be split. An introduction to MFPs can be found in [1].
Heuristics [5] and exact methods [2, 3, 4, 9] have been proposed for the binary MFP. We
use the model where the decision variables are associated with paths as a starting point
for defining the components of a multi-start local search heuristic (LSH). Following the
classification of combinations of exact and heuristic methods of [10], our present method
can be seen as a collaborative sequential method.

2 Column Generation and Branch-and-Price-and-Cut

The binary MFP is defined in a network with a set of n nodes, represented by N, and a set
of m arcs, represented by A. We use an index i={1,...,n} to represent a node and a pair of
indices ij to represent an arc which has origin in node i and destination in node j. We
define a set K of h commodities, indexed by k. Each commodity k has an origin, ok, a
destination, dk, and an integer demand, rk, which is the number of units supplied at its
origin and required at its destination. We also define an integer capacity uij associated
with each arc of the network and a unit cost, cij

k, associated with the flow of commodity k
on arc ij . We make the usual assumption, cij

k ≥ 0, ∀ij∈A, ∀k∈K.

Filipe
Text Box
in Proceedings of the "International Network Optimization Conference 2007", Spa, Belgium, April 22-25, 2007, (with refereeing)

We denote the set of simple paths between the origin and the destination of commodity k
by Pk. The parameter yij

pk, ∀ij∈A, ∀k∈K, ∀p∈Pk, assumes value 1 if arc ij belongs to the
path p of commodity k, and 0 otherwise. The cost of one path, cpk, is given by

∑
∈

=
Aij

k
ij

pk
ij

pk cyc . Finally, we define the decision variable associated with each path as λpk,

∀k∈K, ∀p∈Pk. The path model of the binary MFP is:

 ∑ ∑
∈ ∈Kk kPp

pkkpkrcMin λ

 Kk,1

:t.s

kPp

pk ∈∀=∑
∈

λ (1)

 Aij,ury ij
Kk kPp

pkkpk
ij ∈∀≤∑ ∑

∈ ∈

λ (2)

 { } kpk Pp,Kk,1,0 ∈∀∈∀∈λ .

Typically, when solving path models of multicommodity flow problems, a column
generation approach is used, since the number of variables is extremely large. A detailed
description of this method applied to the fractional multicommodity flow problem is
given in [1]. In order to obtain binary solutions, a combination of column generation, the
use of cuts, and branch-and-bound (branch-and-price-and-cut) was first developed in [3].
A branch-and-price-and-cut (BPC) algorithm with a different branching strategy, where
the branching constraints are kept in the master problem and their duals are integrated in
the objective function of the subproblem(s), is described in [2]. In this way, solving the
problem associated with one node of the search tree is similar to solving the problem of
the root node, in the sense that the subproblem structure is the same. The same happens if
cuts are introduced in the master problem, i.e., the subproblem structure does not change.
The starting point of the heuristic, presented in the next Section, is any RMP (possibly
including branching constraints and cuts) along with an optimal fractional primal solution
and an optimal dual solution.
In the application of the heuristic to the binary MCF, we used the RMP of the root node.
In this case, the optimised RMP provides a set of paths, their weights (optimal fractional
primal solution) and the dual solution associated with the constraints (including lifted
cover inequalities).

3 Local Search based on Column Generation

A solution of the LSH is represented by a set of h paths, one for each commodity. A
solution may be infeasible, since capacity constraints (2) may be violated. A neighbor
solution is obtained by selecting a different path for one commodity. With this
neighborhood structure, any solution of the search space can be reached starting in any
other one. Denoting by Qk the set of paths of commodity k included in the RMP, the

number of solutions considered by the LSH is ∏
=

h

1k

kQ and the size of the neighborhood is

()∑
=

−
h

1k

k 1Q .

The sets of solutions involved in the LSH are illustrated in Figure 1: S’M is the relaxed
solution (it may violate the capacity constraints) space of the (full) master problem; S’RMP
is the relaxed solution space of the RMP; SM is the space of feasible solutions (includes
the optimal solution); and SRMP is the space of feasible solutions of the RMP. Note that, if
one path that belongs to the optimal solution is not included in the RMP, the optimal
solution may not be found in the space searched. Also note that the search space (S’RMP)
may not include any feasible solution when S’RMP ∩ SRMP=∅.

Figure 1 Illustration of the relation between solution spaces.

In order to construct the initial solution, we considered three alternatives. In the first one,
for each commodity, the path with largest weight is selected. In the second and third
alternatives, one path of each commodity is selected randomly. In the second alternative
the weight of a path is taken as the probability of its selection. In the third alternative, the
probabilities for a given commodity are uniform. We note that in the first two
alternatives, primal information from the RMP is used, and that, in the first alternative,
since the procedure is deterministic, the heuristic solution generated is always the same.
In preliminary computational tests, the second alternative clearly gave the best results. As
an example, for one instance (bl11), with four different evaluation functions and ten runs
each one (each run with 20 starts), the second alternative always obtained a feasible
solution, while the first and third alternatives did not obtain any.
We separate the evaluation of a solution in two components: one value associated with
the cost of the paths (feasibility value) and one value associated with the violation of the
capacity constraints (infeasibility value). When comparing two (in)feasible solutions,
only the (in)feasibility values are used. When comparing one feasible solution with one
infeasible solution, the former is always better.
For simplicity of notation, in the discussion that follows, we consider that there are
neither branching constraints nor cuts in the RMP.
We considered two alternatives for the feasibility values: original costs and modified
costs. In the first alternative, the feasibility value of one solution is obtained by summing
up the original costs of its paths. In the second alternative, the feasibility value of one
solution is obtained by summing up the modified costs of its paths, where the modified

cost of a path is given by () k
ij

Aij
ij

k
ij

kpk ywcrc ∑
∈

+= , where wij is the (nonnegative) dual

variable associated with the capacity constraint (2) of arc ij . For a basic path p of

commodity k, kpkc π= , and πk is the dual variable associated with the convexity
constraint (1) of commodity k. For a non basic path q of the same commodity k,

SM S’RMP SRMP S’M

kqkc π≥ . Using modified costs allows the implicit consideration of the capacity
constraints.
We also considered two alternatives to calculate the infeasibility value of a solution. In

the first one, the infeasibility value is given by ∑ ∑
∈ ∈

 −

Aij Kk
ij

kk'p
ij ury,0Max , where p’ is

the path of commodity k in the solution. In second alternative, the values associated with
the dual variables of the capacity constraints are used to weight the violation of the
different constraints. For each arc ij∈A, we define ijw =wmax, if wij=0 and ijw =wij, if

wij>0, where wmax is the largest value of a dual variable wij. The infeasibility value is

given by ∑ ∑
∈ ∈

 −
Aij Kk

ij
kk'p

ijij uryw,0Max . We note that this second alternative is

commonly used (for example, in [11]), but with the ijw values not related to the duals.

In the next section, we present computational results for the four combinations of these
alternatives.

4 Computational Results

All the reported results were obtained on a personal computer with a Pentium 4, 2.80
GHz processor, 1 GB of RAM, running Windows XP Professional Edition. We used the
largest 32 Carbin test instances (available at www.dps.uminho.pt/pessoais/falvelos/). We
also tested one instance (planar50) from [7] (obtained at www.di.unipi.it/~frangio/).
In Table 1, the number of arcs (column m) and the number of commodities (column h)
for each instance are given. All Carbin instances have 32 nodes and the planar50 has 50
nodes. The difference between each group of four consecutive Carbin instances lies in
the cost structure (the arc costs vary by commodity − second and fourth instances − or not
− first and third instances, and their values are between 1 and 1000 − first and second
instances − or between 1 and 10 − third and fourth instances). The BPC algorithm is
based on the branching rule introduced in [2], and uses general lifted cover inequalities
(LCIs), a depth search strategy and columns with reduced cost greater than the duality
gap are removed every five iterations. We implemented the L−2queue algorithm to solve
shortest path (sub)problems, and used the COIN (www.coin-or.org/) implementation of
the Horowitz-Sahni algorithm to solve the knapsack problems when constructing LCIs.
We used the Cplex 8.1 (www.ilog.com) dual simplex algorithm to solve the RMPs. The
LSH is executed after the optimal solution of the BPC root node is obtained (thus, the
RMP may include cuts, but no branching constraints) with 200 starts.
We first compare the LSH alternatives. Alternative ND provided the best results: feasible
integer solutions for 20 out of the 33 instances, and the best heuristic solution 14 times.
The second best was alternative DN (20 feasible solutions, 4 best heuristic solutions; in
two of them, it was the only alternative that obtained feasible solutions).
We now compare the quality of the solutions of the best LSH alternative with BPC,
noting the very significant difference between the execution times. The number of integer
feasible solutions found was approximately the same with both algorithms (20 vs. 21).
The LSH provided integer solutions better than the obtained by the BPC algorithm (either
the optimal solution or the incumbent solution) in one hour in 10 out of 33 instances (the

opposite happened 16 times). For five of the largest instances (bl18, bl19, bs17, bs18 and
bs21), the results were even more impressive: the local search heuristic found one
feasible solution in a few minutes, while BPC was not able to do so in one hour.

LSH BPC
NN DN ND DD Instance m h RT

V T V T V T V T V T
bl09 96 192 2.8 ** ** *** 42 *** 43 *** 39 *** 39
bl10 96 192 1.3 ** ** *** 41 *** 41 *** 44 *** 44
bl11 96 192 0.7 69018 470 69141 8 69151 8 69143 8 69145 8
bl12 96 192 1.5 66019 * *** 3 67244 29 *** 31 *** 30
bl13 320 192 7.5 3155673 * 3143701 44 3142417 43 3144458 48 3144687 48
bl14 320 192 2.3 2433011 301 2452994 41 2456951 42 2452720 46 2453219 47
bl15 320 192 2.9 34274 316 34362 24 34345 23 34302 24 34302 24
bl16 320 192 1.8 28074 37 *** 25 *** 24 *** 25 *** 24
bl17 96 320 3.0 13324233 * 13343031 184 13297281 180 13274926 189 13317324 202
bl18 96 320 5.0 ** ** 10561044 178 10551262 181 10540177 199 10546784 204
bl19 96 320 6.2 ** ** 110059 238 110410 235 110350 253 110571 241
bl20 96 320 4.5 ** ** *** 218 *** 235 *** 235 *** 229
bl21 320 320 16.7 5837994 * 5843286 202 5854770 205 5828677 218 5847143 209
bl22 320 320 10.0 4217172 * 4244190 184 4260610 180 4238529 191 4254038 187
bl23 320 320 11.6 56970 * 57669 159 57684 156 57312 171 57525 170
bl24 320 320 6.5 51081 * 48164 143 48103 140 48316 146 48231 148
bs09 96 192 1.7 6308373 * 6331112 45 *** 41 6364750 46 6369392 48
bs10 96 192 2.0 ** ** *** 45 7255730 45 *** 48 *** 49
bs11 96 192 4.9 ** ** *** 66 *** 60 *** 65 *** 66
bs12 96 192 2.1 ** ** *** 34 *** 34 *** 36 *** 35
bs13 320 192 8.4 3615375 * *** 83 3716193 83 3654204 89 3729077 85
bs14 320 192 12.5 3181860 * *** 153 *** 154 *** 158 *** 159
bs15 320 192 3.7 38533 117 38755 30 38764 30 38695 30 39022 29
bs16 320 192 3.3 31124 335 *** 63 *** 64 *** 63 *** 65
bs17 96 320 4.9 ** ** 11559349 148 11555234 145 11548436 158 11564789 162
bs18 96 320 4.3 ** ** *** 202 *** 200 10603149 215 *** 210
bs19 96 320 5.9 106369 * 106770 100 106542 106 106600 113 106433 112
bs20 96 320 4.6 ** ** *** 184 *** 184 *** 197 108679 205
bs21 320 320 64.0 ** ** 5653280 284 5650572 281 5645452 298 5665752 299
bs22 320 320 36.5 4796079 * *** 501 *** 506 *** 542 *** 541
bs23 320 320 30.9 57821 * 58273 210 58656 210 58194 234 58396 224
bs24 320 320 15.9 51045 * *** 277 *** 274 *** 289 *** 291

planar50 250 267 1.0 123226335 * 122543523 203 122707247 140 122514873 189 122687405 139

Table 1 Computational results.
* An optimal solution was not obtained within one hour; the corresponding V is the value of the incumbent
integer solution. ** A feasible integer solution was not obtained within one hour. *** The heuristic did not
find a feasible solution. RT − Root CPU time including the generation of cuts (in seconds); BPC − Branch-

and-price-and-cut; V − Value of the solution; T − CPU time excluding the root time (in seconds); LSH −
Local search heuristic(s); NN − no dual information is used in evaluating solutions; DN − dual information
is used in evaluating feasible solutions; ND − dual information is used in evaluating infeasible solutions;

DD − dual information is used in evaluating feasible and infeasible solutions.

5 Conclusions

In this paper we presented a multi-start local search heuristic (LSH) that can be applied in
column generation models with binary variables and convexity constraints.
The LSH uses primal and dual information from a restricted master problem when
building an initial solution and when evaluating solutions, respectively.
When applied to the binary multicommodity flow problem, the local search heuristic
yielded solution of quality similar to those of a branch-and-price-and-cut (BPC)
algorithm, but using a small fraction of time. For some instances the local search heuristic

found one feasible solution in a few minutes, while BPC did not obtain any feasible
solution in one hour.
In the present application, the starting point of the LSH was the RMP of the root node of
a BPC tree. A natural extension is its use in different nodes of the branch-and-price-and-
cut tree.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows: Theory, algorithms,

and applications, Prentice Hall, Englewood Cliffs, NJ, 1993.
[2] F. Alvelos and J.M.V.d. Carvalho, Comparing branch-and-price algorithms for

the unsplittable multicommodity flow problem, INOC - International Network
Optimization Conference, Institut National des Télécommunications, France,
2003, pp. 7-12.

[3] C. Barnhart, C.A. Hane, and P.H. Vance, Using branch-and-price-and-cut to solve
origin-destination integer multicommodity flow problems, Operations Research
48 (2000), 318-326.

[4] M. Belaidouni and W. Ben-Ameur, A superadditive approach to solve the
minimum cost single path routing problem: preliminary results, INOC -
International Network Optimization Conference, 2003, pp. 67-71.

[5] M.-C. Costa, A. Hertz, and M. Mittaz, Bounds and heuristics for the shortest
capacitated paths problem, Journal of Heuristics 8 (2002), 449-465.

[6] M. Gendreau and J.-Y. Potvin, Metaheuristics in combinatorial optimization,
Annals of Operations Research 140 (2005), 189-213.

[7] T. Larsson and D. Yuan, An augmented Lagrangian algorithm for large scale
multicommodity routing, Computational Optimization and Applications 27
(2004), 187-215.

[8] M.E. Lübbecke and J. Desrosiers, Selected topics in column generation,
Operations Research 53 (2005), 1007-1023.

[9] S. Park, D. Kim, and K. Lee, An integer programming approach to the path
selection problems, International Network Optimization Conference, 2003, pp.
448-453.

[10] J. Puchinger and G.R. Raidl, "Combining metaheuristics and exact algorithms in
combinatorial optimization: a survey and classification", Lecture Notes in
Computer Science, J. Mira and J.R. Álvarez (Editors), Springer, 2005, Vol. 3562,
pp. 41-53.

[11] M. Yagiura and T. Ibaraki, "Local Search", Handbook of Applied Optimization,
P.M. Pardalos and M.G.C. Resende (Editors), Oxford University Press, 2002, pp.
104-123.

