

Using Circuit Variables to Accelerate Column Generation
in Planar Multicommodity Flows

Filipe Alvelos 1, J. M. Valério de Carvalho 1

1 Departamento de Produção e Sistemas, Centro de Investigação Algoritmi
Address: Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal

Email: {vc,falvelos}@dps.uminho.pt

January 2005

Abstract
In this work we present a way of accelerating a column generation algorithm for the

linear minimum cost multicommodity flow problem. We use a new model that, besides the
usual variables corresponding to flows on paths, has a polynomial number of extra variables,
corresponding to flows on circuits. Those extra variables are explicitly considered in the
restricted master problem, from the beginning of the column generation process. The
subproblem remains a set of shortest path problems, one for each commodity.

We present computational results for the comparison of this new approach with standard
column generation, a bundle method and a general-purpose solver. For the tested instances,
there is an effective improvement in computational time of the column generation method when
the extended model is used.

keywords multicommodity flows, column generation, planar graphs.

1 Introduction

Multicommodity flow models have been used for several decades to deal with optimisation
problems in transportation/distribution systems, telecommunications networks and production
planning, among others.

In this work we consider the minimum cost linear multicommodity flow problem (MFP)
defined in a planar network. This problem is defined over a network in which we want to route,
with minimal cost, a set of commodities from their origin to their destination without exceeding
the capacities of the arcs. We consider that, for each arc, the costs of all commodities are the
same. This is a usual assumption in some applications of multicommodity flow models, as, for
instance, in telecommunications networks, where the commodities are usually associated with
streams of traffic between different pairs of users and the quality of the solution does not
depend on the particular flow pattern of each commodity, but on the overall flow pattern.

A description of several applications of multicommodity flow models can be found in the
surveys presented in [12], [4] and Chapter 17 of [1]. In the same surveys, classical methods are
described. More recently, several approaches have been developed. Among them, we refer to
specialized interior point methods [19] [6], bundle methods [9], analytic center cutting plane
methods [10] and the hybridisation of integer and constraint logic programming techniques [18].

In this work we focus on the column generation method. Although almost 50 years has
passed since its first application [7] (precisely on a multicommodity flow problem), in recent
years a renewed interest on this method had appear, derived from its potential when embedded
in integer programming methods and from the perception that there are several open roads to
explore in order to improve its convergence properties [8, 15].

It is well known that column generation algorithms have poor convergence properties
[14]. To deal with that issue several methods have been devised, usually taking a dual
perspective, given that column generation can be seen as the Kelley’s cutting plane algorithm
applied to the dual problem [16].

Our present work is based on the method proposed by Valério de Carvalho [5]. The
fundamental idea is that by adding extra variables (extra dual cuts), prior to the beginning of the
column generation process, we can speed up the column generation algorithm and improve its
practical convergence properties. The motivation is the following: the use of a tighter dual space
restriction from the start may help in finding the optimal solution faster. Under certain
conditions, the primal space is not relaxed, and it is possible to recover an optimal solution to
the original problem from the optimal solution to the extended model. In this work we apply a
similar idea to the MFP defined over planar graphs.

The extra variables added to the model must be tailored to the specific problem at hand.
In the case of the MFP, we use variables associated with flows on circuits. An important issue is
that the number of extra variables must be tractable by the master problem. We restrict our
present work to the MFP defined on planar graphs, where it is possible to select a polynomial
number of circuits, based on which all circuits of the network are implicitly considered. Our
final aim is to generalise this approach to the MFP defined on general a graph.

In Section 2, we briefly review the standard column generation algorithm for the path
formulation of the MFP. In Section 3, our approach is presented and discussed. Comparative
computational results are the subject of Section 4. In Section 5, conclusions of this work are
taken and future work is considered.

2 Path Formulation and Standard Column Generation

We start this section by defining the notation that will be used.
We consider a network formed by a set of n nodes, being N the set of their indices, and a

set of m of arcs, being A the set of indices ij of the arcs (arc ij has origin in node i and
destination in node j). We define a set K of indices of h commodities. Each commodity k∈K is
characterised by an origin node, a destination node and a demand, rk. We also define an integer
capacity uij and a unit cost, cij, both associated with each arc of the network.

We represent the set of indices of all simple paths between the origin and the destination
of commodity k by Pk. If arc ij belongs to path p of commodity k, then δij

pk equals 1, and 0,
otherwise. The unit flow cost of path p of commodity k, is cpk = ∑

∈Aij
ij

pk
ij cδ ,∀k∈K, ∀p∈Pk.

When we refer to a path of a commodity we mean a simple path that begins at the origin of a
commodity and ends at its destination.

Defining decision variables, ypk, as the flow on each path of all commodities, we obtain
the path formulation:

Minimise ∑ ∑
∈ ∈Kk Pp k

cpkypk

s.t. ∑
∈ kPp

 ypk = rk , ∀k∈K (1)

∑ ∑
∈ ∈Kk Pp k

δij
pk ypk ≤ uij , ∀ij∈A (2)

ypk ≥ 0, ∀k∈K, ∀p∈Pk.
Constraints (1) ensure that the all the demand of each commodity is routed from its origin

to its destination. Constraints (2) ensure that the capacities of all the arcs are respected. The
exponential number of decision variables of this model inhibits the possibility of the use of
direct methods (such as simplex).

Applying column generation, a restricted master problem (RMP), that is a problem where
not all paths are considered, is first optimised. After optimising the RMP, the attractiveness of
the paths that are not present in the RMP is evaluated by solving a subproblem that uses the
values of the dual variables of the RMP. That subproblem consists in determining the shortest
path between their origin and their destination for all commodities in a network with (non
negative) costs. After inserting the attractive paths in the RMP, the procedure is repeated until

no attractive paths are returned by the subproblem. A detailed exposition of this procedure is
presented in [1].

3 Accelerating Column Generation for Planar Problems

3.1 An extended model with circuits
The main idea of our procedure to accelerate the column generation method to solve the linear
multicommodity flow problem is to add variables corresponding to circuits to the path
formulation, thus obtaining a new model. The circuits that we consider have no arc repetitions,
are oriented and formed by, at least, three arcs. One of the arcs of the circuit is traversed in the
opposite direction of its orientation (backward arc) and all the remaining arcs are traversed in
the same direction as their orientation (forward arcs).

We consider the set D formed by all the circuits such as the ones defined above, indexed
by s=1,...,|D|. From now on, when referring to circuits, we mean circuits belonging to D, except
when explicitly stated otherwise.

We define a parameter γij
s, ∀ij∈A, ∀s∈D, that is equal to 1, if arc ij is a forward arc of

circuit s; equal to −1 if arc ij is the backward arc of circuit s; equal 0, if arc ij does not belong to
circuit s. We associate with each circuit s, ∀s∈D, a variable ds≥0, which corresponds to the flow
in circuit s. The unit flow cost of circuit s is cs = ∑

∈Aij
ij

s
ijcγ , ∀s∈D.

By using the circuits defined above, it may be possible to represent one solution of the
path model by a set of paths and circuits with flow, since some paths with flow can be
represented as the sum of other paths and circuits. We note that the definition of the unitary
costs of the paths and of the circuits implies that the cost of the solution is the same in both
representations.

As an example, consider a (partial) solution in which there is a flow of commodity k in
the two paths as represented in Figure 1. For easiness of explanation, suppose that y1k ≥ y2k. The
same (partial) solution can be represented as showed in Figure 2, where the new flow on path 1,
denoted by y1k*, is y1k* = y1k + y2k and ds= y2k, since the sum of path 1 and circuit s gives path 2.

p1 p2

Figure 1: One solution represented with

two paths.

sp1

Figure 2: The same solution represented

as one path and one circuit.

We now present an extended model that, besides the path variables, also includes the

above defined circuit variables:
Minimise ∑ ∑

∈ ∈Kk Pp k
cpkypk + ∑

∈Ds
csds

s.t. ∑
∈ kPp

 ypk = rk , ∀k∈K (3)

∑ ∑
∈ ∈Kk Pp k

δij
pk ypk + ∑

∈Ds
γij

s ds ≤ uij , ∀ij∈A (4)

∑ ∑
∈ ∈Kk Pp k

δij
pk ypk + ∑

∈Ds
γij

s ds ≥ 0 , ∀ij∈A (5)

ypk ≥ 0, ∀k∈K, ∀p∈Pk
ds ≥ 0, ∀s∈D.

We can see this model as giving an optimal solution on paths and then, through the
circuits, redirect their flow to other paths. Circuit variables are not present in constraints (3)
since they respect the flow conservation of all nodes.

We do not associate commodities with the circuit variables because they all have the
same cost and the circuits only have one backward arc. Thus, the choice of the commodity for
which its flow (or part of it) is redirected is irrelevant. In this way, we keep the number of new
variables and constraints small. Furthermore, (4) and (5) can be joined into a ranged constraint.

The new set of constraints (5) state that it is only possible to redirect flow through a
circuit if that flow exists. If we had not constrained the total flow of the arcs to be nonnegative
we could get an unbounded solution (since some circuits may have a negative cost), or a
solution that was impossible to transform into a feasible solution to the arc-path formulation,
since it had a smaller value. In other words, the set of constraints (5) assure that the original
space is not relaxed: only positive flows are still allowed.

With this methodology, we are adding more variables and turning a set of constraints into
a set of ranged constraints. In turn, with the same set of paths in the RMP and with the circuits,
we are considering implicitly a much larger number of extreme points of the subproblems,
since, besides the paths that are present in the RMP, we are considering all the paths that can be
obtained by adding circuits to them. We note that the same circuit, when combined with
different paths, may allow the implicitly consideration of several paths.

So far, we neglected the fact that the number of circuit variables can be very large. In
fact, in a general network, it is exponential with respect to the dimension of the network. Here
we just present results for instances defined in planar graphs. In this case, we can identify a
polynomial number of simple circuits such that all the graph circuits can be represented as
nonnegative combinations of them. Based on those circuits, we can define a polynomial number
of circuit variables (see [3] for a formal a proof).

3.2 Dealing with negative cost cycles in the subproblem
The dual variables of constraints (5) contribute with a negative value to the modified cost of the
arcs in the subproblem objective function, leading to arcs with a negative modified cost, and
even to negative cost cycles. Note that this never happens in the column generation procedure
for the path formulation, because it has not any greater than or equal to constraints.

Therefore, the subproblem of a commodity k still is a shortest path problem but now in a
network that can have negative cycles (all arcs traversed in the direction of their orientation),
which is NP-hard. In order to avoid solving a NP-hard problem, we can overcome this issue by
solving a shortest path problem with a label correcting algorithm, and, when a negative cycle is
detected, we introduce the associated variable in the RMP. After reoptimising the RMP, the
negative cost cycle previously detected will never be generated again.

In this way subproblems may suggest paths or cycles to the RMP. This approach is
presented in [2] in the context of a branch-and-price algorithm for the integer multicommodity
flow problem.

Note that these cycle variables are not related with the extra circuit variables that are
present from the very beginning in the RMP. All the arcs of the cycles are forward arcs.

3.3 Obtaining the optimal solution of the path formulation
If there are no circuit variables with positive values then the actual solution is optimal to the arc-
path model. Otherwise, we developed a procedure, fully described in [3], to perform the
conversion of one optimal solution of the extended model to one optimal solution to the path
model, with the same cost. The main idea is redirecting all the flow on circuits to paths, forcing
circuit variables to have a null value one after the other.

4 Computational Tests

We compared an implementation of our proposed method (ACG) with an implementation of
standard column generation (CG), with other specialized code for multicommodity flow
problems based on a bundle method [9] (B) and Cplex 6.6 [11] (C) solving directly the arc
formulation. Our code was developed in C++ using the programming environment Microsoft
Visual Studio 6.0. We used the class library LEDA 4.1 [17] for identifying the circuits, to solve
the shortest path subproblems and to randomly generate of the tested instances. We used Cplex
6.6 to solve the restricted master problems. The Bundle code was provided to us by Professor
Antonio Frangioni. We note that this code can be used with more general instances (namely
instances with multiple origins and destinations). We also note that the adjustment of its
parameters was, by no means, exhaustive and not done by an experienced user. In spite of the
theoretical closeness of the two methods (column generation and bundle), the implementations
tested have a major difference: the column generation uses a disaggregated approach and the
bundle an aggregated one.

We tested three groups of instances: A, B and Planar. We randomly generated A and B
instances. The values presented for these instances in Table are average values for sets of three
instances with the same characteristics. The other group of instances comes from [13] and was
obtained in the address (maintained by Antonio Frangioni) http://www.di.unipi.it/di/groups/
optimize/Data/MMCF.html. We refer to this last set of instances as the planar instances, in order
to keep their original designation, but noting that all the instances in all sets are planar.

The results given in Table 1 were obtained on a personal computer with a Pentium 4, 2
GHz processor, 1 GB of RAM, running Windows XP Professional Edition. All the time values
are expressed in seconds. Last column gives the relative difference (in percentage) between
standard column generation and accelerated column generation.

Table 1: Computational results.

Instance(s) n m h C B CG CGA %∆

A100dl 100 569 600 195.2 18.2 1.2 1.1 -10.2
A100ds 100 572 300 29.7 9.4 0.6 0.7 31.9
A100sl 100 400 600 77.1 5 0.8 0.8 -4.1
A100ss 100 400 300 23.8 2.9 0.5 0.5 5.3
A600dl 600 3562 3600 - - 154.4 52.8 -65.8
A600ds 600 3557 1800 - - 82.7 30.9 -62.6
A600sl 600 2400 3600 - - 173.5 98.4 -43.3
A600ss 600 2400 1800 - - 54.9 34.4 -37.4
B100dl 100 285 600 20.1 38.3 2.1 1.2 -44.9
B100ds 100 286 300 7.2 5.3 0.7 0.5 -31.1
B100sl 100 200 600 3.5 10.6 0.6 0.4 -38.2
B100ss 100 200 300 1.5 2.2 0.3 0.2 -1.3
B600dl 600 1771 3600 - - 1470.9 175.1 -88.1
B600ds 600 1778 1800 - - 685.3 166 -75.8
B600sl 600 1200 3600 - - 255.1 78.9 -69.1
B600ss 600 1200 1800 - - 75.9 26.9 -64.6

p30 30 150 92 0.2 - 0.1 0.1 -14.3
p50 50 250 267 3.9 - 0.2 0.2 11.8
p80 80 440 543 73 - 1.3 0.8 -38.4

p100 100 532 1085 291.2 - 3.1 2 -35.5
p150 150 850 2239 - - 88.6 43.6 -50.7

The computational tests clearly show the effectiveness of method proposed in this work

to accelerate column generation. In fact, for all groups of instances that took more than two

seconds to be solved by standard column generation, the relative improvement is always greater
than 35% and frequently greater than 60%.

The best relative improvements were achieved in the larger instances, and, in particular,
in the instances with a large number of commodities defined in dense networks.

5 Conclusions

In this work, we presented a way of accelerating column generation for the linear
multicommodity flow problem in planar graphs. The method used is based on a new model,
which includes a polynomial number of extra variables corresponding to flows on circuits.

Computational tests for three different sets of instances showed the efficiency of this new
approach.

The presented approach poses no theoretical difficulties when applied to related
multicommodity flow problems. In particular, it can be used in instances of the same problem
with multiple origins and destinations for each commodity, or in the multicommodity maximal
flow problem. Future work will include the exploration of its use has a component of a branch-
and-price algorithm. Another natural development of this work is to apply the same approach on
multicommodity problems in general networks. The main question that arises is how to control
the (exponential) number of extra variables, or, saying it in another way, how to select an
effective subset of extra variables such they do not make the master problem too large.

Acknowledgements

We thank Carina Pimentel for programming the random instance generator used and for the
realization of the computational tests. We thank Professor Antonio Frangioni for sharing with us
his bundle code (and for the support given on running it) allowing the comparison that was
made. We also thank his valuable comments that helped us improving this work. This work was
partially supported by Fundação para a Ciência e Tecnologia (Projecto POSI /1999 /SRI/35568)
and Centro Algoritmi da Universidade do Minho.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, "Network Flows". Prentice Hall, 1993.
[2] F. Alvelos, J.M.V.d. Carvalho, "Aplicação do método de partição e geração de colunas ao

problema do fluxo multicomodidade", Investigação Operacional, 21, 71-92, 2001.
[3] F. Alvelos, J.M.V.d. Carvalho, "Accelerating column generation for planar multicommodity

flow problems", Universidade do Minho, Cadernos do DPS-08/2003, 2003.
[4] A.A. Assad, "Multicommodity network flows - A survey", Networks, 8, 37-91, 1978.
[5] J.M.V.d. Carvalho, "Using extra dual cuts to accelerate column generation", to appear in

INFORMS Journal on Computing, 2000.
[6] J. Castro, "A specialized interior-point algorithm for multicommodity network flows",

SIAM Journal on Optimization, 10, 852-877, 2000.
[7] L.R. Ford, D.R. Fulkerson, "A suggested computation for maximal multicommodity network

flows", Management Science, 5, 97-101, 1958.
[8] A. Frangioni, "About lagrangian methods in integer optimization", Università di Pisa,

Dipartimento di Informatica, 2004.
[9] A. Frangioni, G. Gallo, "A bundle type dual-ascent approach to linear multicommodity min

cost flow problems", INFORMS Journal on Computing, 11, 370-393, 1999.
[10] J.L. Goffin, J. Gondzio, R. Sarkissian, J.P. Vial, "Solving nonlinear multicommodity flow

problems by the analytic center cutting plane method", Mathematical Programming, 76,
131-154, 1996.

[11] ILOG, "CPLEX 6.5, User's Manual". 1999.

[12] J.L. Kennington, "Survey of linear cost multicommodity network flows", Operations
Research, 26, 209-236, 1978.

[13] T. Larsson, D. Yuan, "An augmented lagrangian algorithm for large scale multicommodity
routing", Department of Mathematics, Linköpings Universitet, Research report, 2001.

[14] C. Lemaréchal, "The omnipresence of Lagrange", 4OR Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, 1, 7-25, 2003.

[15] M.E. Lübbecke, J. Desrosiers, "Selected topics in column generation", Les Cahiers de
GERAD G-2002-64, 2002.

[16] R.E. Marsten, W.W. Hogan, J.W. Blankenship, "The boxstep method for large-scale
optimization", Operations Research, 23, 389-405, 1975.

[17] K. Mehlhorn, S. Näher, "LEDA - A platform for combinatorial and geometric computing".
Cambridge University Press, 1999.

[18] W. Ouaja, B. Richards, "A hybrid multicommodity routing algorithm for traffic
engineering", Networks, 43, 125-140, 2004.

[19] G.L. Schultz, R.R. Meyer, "An interior point method for block angular optimization",
SIAM Journal on Optimization, 1, 583-602, 1991.

