

# USE OF ANALYTIC HIERARCHY PROCESS (AHP) TO SUPPORT THE DECISION-MAKING ABOUT DESTINATION OF A BATCH OF DEFECTIVE PRODUCTS WITH ALTERNATIVES OF REWORK AND DISCARD

João Cláudio Ferreira Soares, Anabela Pereira Tereso, Sérgio Dinis Teixeira Sousa  
Centre ALGORITMI, University of Minho, Campus de Azurém, 4804-533 Guimarães, Portugal  
[id6293@alunos.uminho.pt](mailto:id6293@alunos.uminho.pt); [anabelat@dps.uminho.pt](mailto:anabelat@dps.uminho.pt); [sds@dps.uminho.pt](mailto:sds@dps.uminho.pt)



# Oral presentation

## TOPICS:

1. Introduction.....3
2. Case study.....4
3. Results and discussion.....19
4. Conclusions.....20
5. References.....21



# 1. Introduction

- Application of AHP - support the decision-making - destination of a batch of defective products.
- Alternatives of destination: rework / discard.
- Mathematical development of the model: Excel.
- From a flow of analysis of quality problems - AHP method adapted and applied - using evaluation questions to establish the criteria for comparison.
- Evidence problem analysis -> answers and determination of criteria weights -> influences of the answers on cost/quality of the product -> rework or disposal.

## 2. Case study

- Study developed - Brazilian plant of a Japanese auto parts industry (SHOWA) - supplies world-renowned Japanese motorcycle manufacturers (Honda and Yamaha).
- Defective product - steering column of one of the models - presented the weld bead displaced from the correct position.
- Six decision criteria were used in the form of objective questions with "Yes" or "No" answers.
- The answers to the questions of the criteria - obtained from the evidence collected and verified in the technical analysis of the problem.
- Each criterion undergoes a change of importance (weight) according to the answer (yes or no) of the respective question.
- Information - collected through the engineering manager.
- Criteria - weighted consensus specialists in the areas of manufacturing, quality and engineering.

## 2.1 Problem Definition

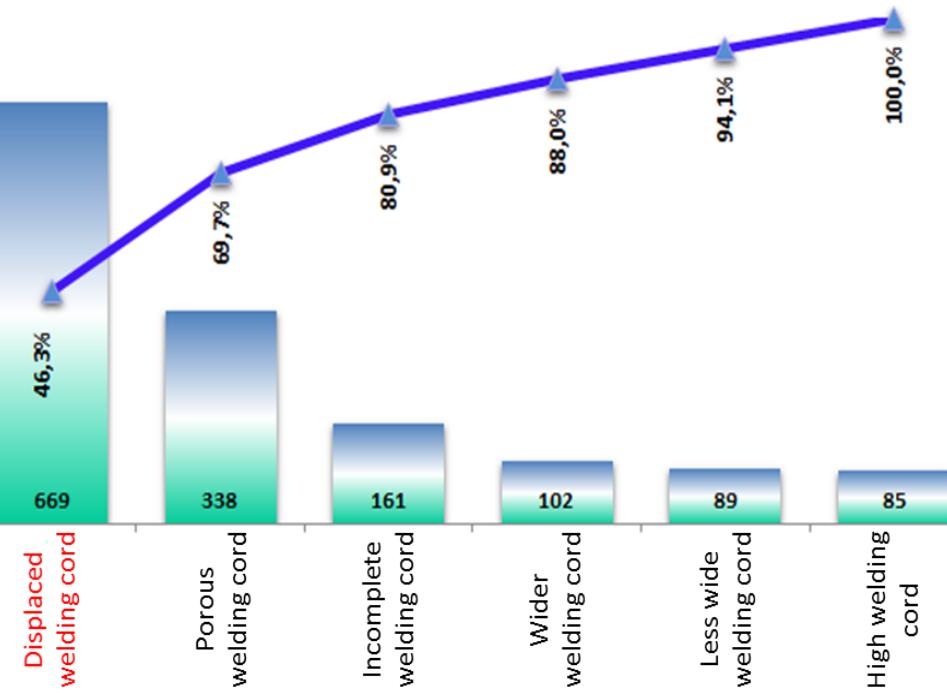



Figure 3: Type of defects in the welding process of the steering column in March 2016

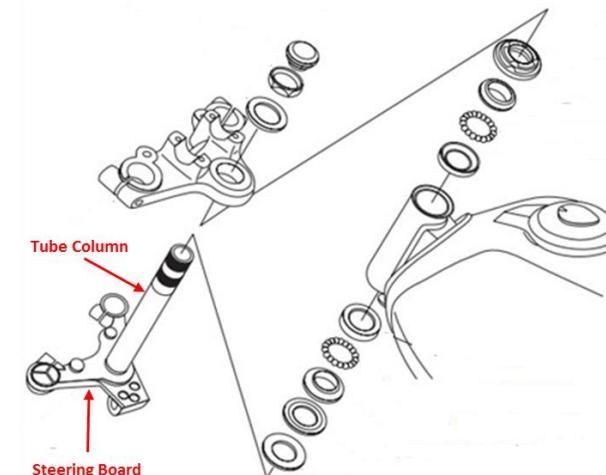
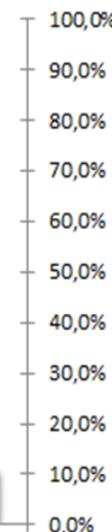




Figure 1: Complete steering column assembly

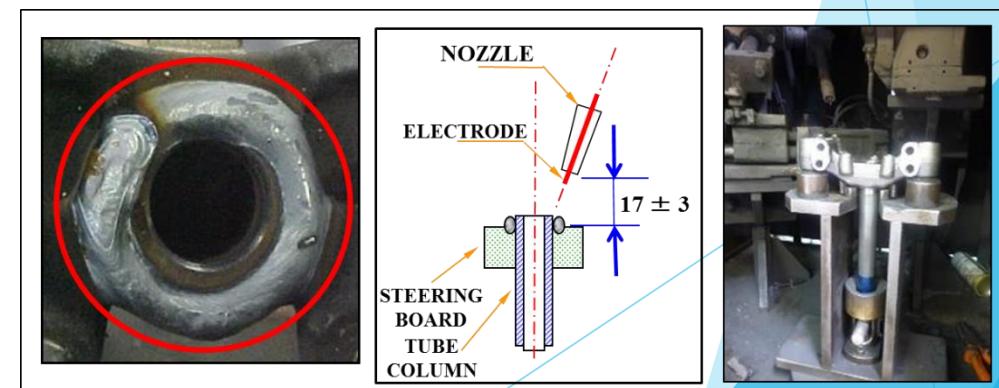



Figure 2: Weld bead of the displaced steering column (left), diagram of the welding process with alignment by the fork holes (center and right)

## 2.2 Definition of Decision Criteria

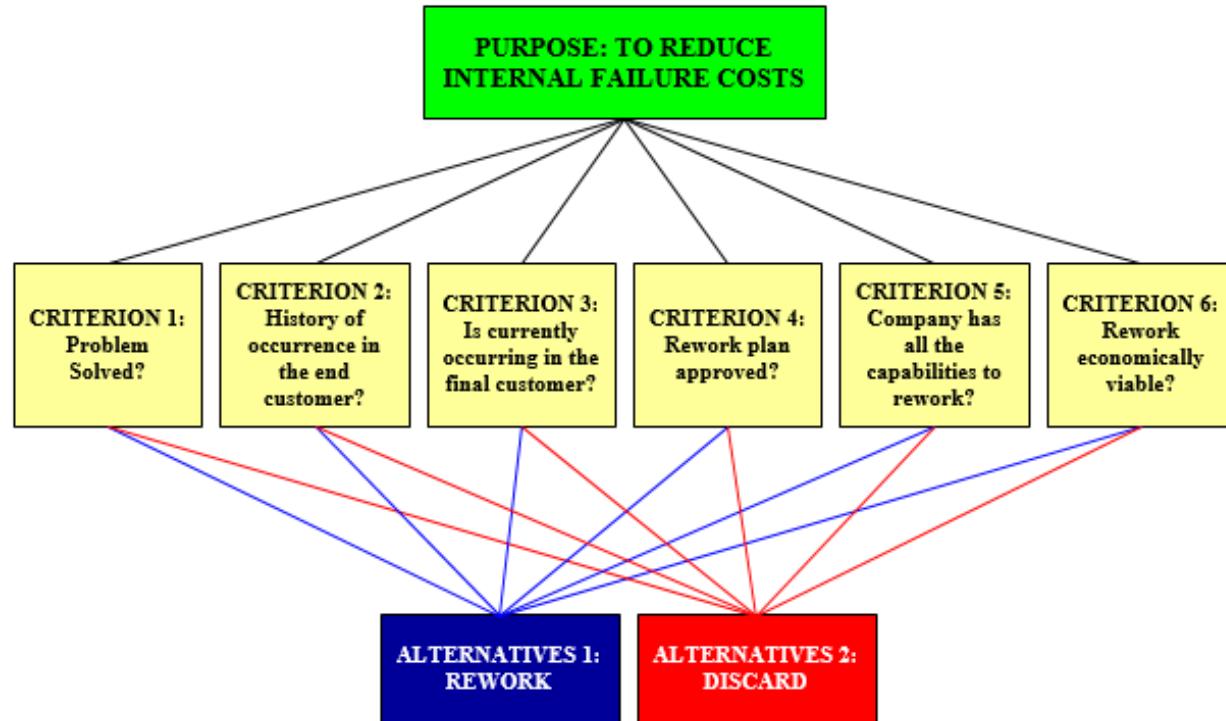



Figure 5: Hierarchical Problem Structuring

Table 1: Criteria with two possible conditions and respective tendencies

| Attributes/Criteria                           | Responses of flow Analysis |                     |
|-----------------------------------------------|----------------------------|---------------------|
|                                               | Yes                        | No                  |
| Problem Solved?                               | Tendency to Rework         | Tendency to Discard |
| History of occurrence in the final customer?  | Tendency to Discard        | Tendency to Rework  |
| Is currently occurring in the final customer? | Tendency to Discard        | Tendency to Rework  |
| Rework plan approved?                         | Tendency to Rework         | Tendency to Discard |
| Company has all the capabilities to rework?   | Tendency to Rework         | Tendency to Discard |
| Rework economically viable?                   | Tendency to Rework         | Tendency to Discard |



## 2.3 Weight and relationship of Criteria with alternatives

Table 2: Saaty Fundamental Scale – AHP

Intensity scale of importance - AHP

| Intensity scale of importance | Definition                           | Explanation                                                                                   |
|-------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|
| 1                             | Equal importance                     | Two elements contribute equally to the objective.                                             |
| 3                             | Weak importance of one over another  | Experience and judgment moderately favor one element over another.                            |
| 5                             | Strong importance                    | Experience and judgment strongly favor one element over another.                              |
| 7                             | Very strong importance               | One element is favored very strongly over another; its dominance is demonstrated in practice. |
| 9                             | Absolute importance                  | Evidence favors one activity over another, with the highest degree of certainty.              |
| 2, 4, 6 e 8                   | Median of both neighboring judgments | When compromise is needed.                                                                    |

Table 3: Weight of the Criteria in the possibilities of answers "Yes" and "No"

| Attributes/Criteria                         | Responses of flow Analysis |                     | Weight AHP |    |
|---------------------------------------------|----------------------------|---------------------|------------|----|
|                                             | Yes                        | No                  | Yes        | No |
| Problem Solved?                             | Tendency to Rework         | Tendency to Discard | 2          | 9  |
| History of occurrence in the end customer?  | Tendency to Discard        | Tendency to Rework  | 9          | 2  |
| Is occurring currently in the end customer? | Tendency to Discard        | Tendency to Rework  | 9          | 3  |
| Rework plan approved?                       | Tendency to Rework         | Tendency to Discard | 4          | 9  |
| Company has all the capabilities to rework? | Tendency to Rework         | Tendency to Discard | 5          | 9  |
| Rework economically viable?                 | Tendency to Rework         | Tendency to Discard | 9          | 9  |

## 2.4 Hierarchy, criteria analysis and weight assignment for alternatives

Table 4: Result of the evaluation of required quality level and cost of rework options

| Activity          | Welding production piece with cord displacement | (1) Rework to remove the cord for new welding | (2) Rework fill with welding                   |
|-------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------------|
| Time              | 28 seconds                                      | 83 seconds                                    | 16 seconds                                     |
| Condition of Cost | 22,82 BRL                                       | 43,31 BRL                                     | 3,92 BRL                                       |
| Visual Inspection | Not satisfy quality                             | Satisfy quality                               | Satisfy quality                                |
| Rupture test      | Satisfy maximum load                            | Satisfy maximum load                          | Satisfy maximum load                           |
| Test macrography  | Not satisfy penetration                         | Satisfy penetration                           | Not satisfy penetration                        |
| Appraisal Report  | Necessary to rework or dispose of the part      | High cost, bigger than to produce a new piece | Lack of penetration possible premature fatigue |
|                   |                                                 | <b>Not satisfy cost</b>                       | <b>Not satisfy quality</b>                     |

## 2.4 Hierarchy, criteria analysis and weight assignment for alternatives

Table 5: Problem hierarchy and assignment of analysis flow responses

| PROBLEM: WELD BEAD OF THE STEERING COLUMN MOVED                                                                                |           |                                             |                            |    |            |    |               |         |
|--------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------|----------------------------|----|------------|----|---------------|---------|
| Goal                                                                                                                           | Dimension | Attributes/Criteria                         | Responses of flow Analysis |    | Weight AHP |    | Alternatives  |         |
|                                                                                                                                |           |                                             | Yes                        | No | Yes        | No | (1)<br>Rework | Discard |
| Reduce the cost of quality, mainly with internal and external flaws (depending on the external impact of rework in the field). | Quality   | Problem Solved?                             | 1                          | 0  | 2          | 9  | 2             | 1       |
|                                                                                                                                |           | History of occurrence in the end customer?  | 1                          | 0  | 9          | 2  | 1             | 9       |
|                                                                                                                                |           | Is occurring currently in the end customer? | 0                          | 1  | 9          | 3  | 3             | 1       |
|                                                                                                                                |           | Rework plan approved?                       | 0                          | 1  | 4          | 9  | 1             | 9       |
|                                                                                                                                | Cost      | Company has all the capabilities to rework? | 1                          | 0  | 5          | 9  | 5             | 1       |
|                                                                                                                                |           | Rework economically viable?                 | 0                          | 1  | 9          | 9  | 1             | 9       |

## 2.5 Construction of the preference matrices of the alternatives for each criterion.

Table 6: Matrices of preference of the alternatives for each criterion

| Preference for Criterion 1 | Result of the analysis |          |
|----------------------------|------------------------|----------|
|                            | YES                    | NO       |
| <b>Problem Solved?</b>     | <b>1</b>               | <b>0</b> |
| <b>C1</b>                  | Rework                 | Discard  |
| Rework                     | 1                      | 2        |
| Discard                    | 1/2                    | 1        |

| Preference for Criterion 2                        | Result of the analysis |          |
|---------------------------------------------------|------------------------|----------|
|                                                   | YES                    | NO       |
| <b>History of occurrence in the end customer?</b> | <b>1</b>               | <b>0</b> |
| <b>C2</b>                                         | Rework                 | Discard  |
| Rework                                            | 1                      | 1/9      |
| Discard                                           | 9                      | 1        |

| Preference for Criterion 3                         | Result of the analysis |          |
|----------------------------------------------------|------------------------|----------|
|                                                    | YES                    | NO       |
| <b>Is occurring currently in the end customer?</b> | <b>0</b>               | <b>1</b> |
| <b>C3</b>                                          | Rework                 | Discard  |
| Rework                                             | 1                      | 3        |
| Discard                                            | 1/3                    | 1        |

| Preference for Criterion 4   | Result of the analysis |          |
|------------------------------|------------------------|----------|
|                              | YES                    | NO       |
| <b>Rework plan approved?</b> | <b>0</b>               | <b>1</b> |
| <b>C4</b>                    | Rework                 | Discard  |
| Rework                       | 1                      | 1/9      |
| Discard                      | 9                      | 1        |

| Preference for Criterion 5                         | Result of the analysis |          |
|----------------------------------------------------|------------------------|----------|
|                                                    | YES                    | NO       |
| <b>Company has all the capabilities to rework?</b> | <b>1</b>               | <b>0</b> |
| <b>C5</b>                                          | Rework                 | Discard  |
| Rework                                             | 1                      | 5        |
| Discard                                            | 1/5                    | 1        |

| Preference for Criterion 6         | Result of the analysis |          |
|------------------------------------|------------------------|----------|
|                                    | YES                    | NO       |
| <b>Rework economically viable?</b> | <b>0</b>               | <b>1</b> |
| <b>C6</b>                          | Rework                 | Discard  |
| Rework                             | 1                      | 1/9      |
| Discard                            | 9                      | 1        |

## 2.6 Normalization of each criterion

Table 7: Normalization of criteria

| Normalize the Criterion 1 |       |        | Normalize the Criterion 2                  |       |        | Normalize the Criterion 3                   |       |        | Normalize the Criterion 4 |       |        |
|---------------------------|-------|--------|--------------------------------------------|-------|--------|---------------------------------------------|-------|--------|---------------------------|-------|--------|
| Problem Solved?           |       |        | History of occurrence in the end customer? |       |        | Is occurring currently in the end customer? |       |        | Rework plan approved?     |       |        |
|                           | Rewor | Discar | C2 - Criterion                             | Rewor | Discar | C3 - Criterion 3                            | Rewor | Discar | C4 - Criterion            | Rewor | Discar |
| C1 - Criterion 1          | k     | d      | 2                                          |       |        |                                             |       |        | 4                         |       |        |
| Rework                    | 1     | 2      | Rework                                     | 1     | 1/9    | Rework                                      | 1     | 3      | Rework                    | 1     | 1/9    |
|                           | +     | +      |                                            | +     | +      |                                             | +     | +      |                           | +     | +      |
| Discard                   | 1/2   | 1      | Discard                                    | 9     | 1      | Discard                                     | 1/3   | 1      | Discard                   | 9     | 1      |
|                           | =     | =      |                                            | =     | =      |                                             | =     | =      |                           | =     | =      |
|                           | 1 1/2 | 3      |                                            | 10    | 1 1/9  |                                             | 1 1/3 | 4      |                           | 10    | 1 1/9  |
| Normalization             |       |        | Normalization                              |       |        | Normalization                               |       |        | Normalization             |       |        |
| Rework                    | 2/3   | 2/3    | Rework                                     | 1/10  | 1/10   | Rework                                      | 3/4   | 3/4    | Rework                    | 1/10  | 1/10   |
|                           | +     | +      |                                            | +     | +      |                                             | +     | +      |                           | +     | +      |
| Discard                   | 1/3   | 1/3    | Discard                                    | 9/10  | 9/10   | Discard                                     | 1/4   | 1/4    | Discard                   | 9/10  | 9/10   |
|                           | =     | =      |                                            | =     | =      |                                             | =     | =      |                           | =     | =      |
|                           | 1     | 1      |                                            | 1     | 1      |                                             | 1     | 1      |                           | 1     | 1      |

## 2.6 Normalization of each criterion

Table 7: Normalization of criteria

Normalize the Criterion 5

**Company has all the capabilities to rework?**

|                      | Rewor | Discar |
|----------------------|-------|--------|
| C5 - Criterion 5     | k     | d      |
| Rework               | 1     | 5      |
|                      | +     | +      |
| Discard              | 1/5   | 1      |
|                      | =     | =      |
|                      | 1 1/5 | 6      |
| <hr/>                |       |        |
| <b>Normalization</b> |       |        |
| Rework               | 5/6   | 5/6    |
|                      | +     | +      |
| Discard              | 1/6   | 1/6    |
|                      | =     | =      |
|                      | 1     | 1      |

Normalize the Criterion 6

**Rework economically viable?**

|                      | C6 - Criterion | Rewor | Discar |
|----------------------|----------------|-------|--------|
|                      | 6              | k     | d      |
| Rework               |                | 1     | 1/9    |
|                      |                | +     | +      |
| Discard              |                | 9     | 1      |
|                      |                | =     | =      |
|                      |                | 10    | 1 1/9  |
| <hr/>                |                |       |        |
| <b>Normalization</b> |                |       |        |
| Rework               | 1/10           | 1/10  |        |
|                      | +              | +     |        |
| Discard              | 9/10           | 9/10  |        |
|                      | =              | =     |        |
|                      | 1              | 1     |        |

## 2.7 Average of the alternatives for each criterion

Table 8: Matrices of the averages of the alternatives for each criterion

Calculation of the average of the Criterion 1

| Problem Solved? |        |         |         |
|-----------------|--------|---------|---------|
| C1- Criterion 1 | Rework | Discard | Average |
| Rework          | 0,667  | 0,667   | 0,667   |
| Discard         | 0,333  | 0,333   | 0,333   |

Calculation of the average of the Criterion 2

| History of occurrence in the end customer? |        |         |         |
|--------------------------------------------|--------|---------|---------|
| C2- Criterion 2                            | Rework | Discard | Average |
| Rework                                     | 0,100  | 0,100   | 0,100   |
| Discard                                    | 0,900  | 0,900   | 0,900   |

Calculation of the average of the Criterion 3

| Is occurring currently in the end customer? |        |         |         |
|---------------------------------------------|--------|---------|---------|
| C3- Criterion 3                             | Rework | Discard | Average |
| Rework                                      | 0,750  | 0,750   | 0,750   |
| Discard                                     | 0,250  | 0,250   | 0,250   |

Calculation of the average of the Criterion 4

| Rework plan approved? |        |         |         |
|-----------------------|--------|---------|---------|
| C4- Criterion 4       | Rework | Discard | Average |
| Rework                | 0,100  | 0,100   | 0,100   |
| Discard               | 0,900  | 0,900   | 0,900   |

Calculation of the average of the Criterion 5

| Company has all the capabilities to rework? |        |         |         |
|---------------------------------------------|--------|---------|---------|
| C5- Criterion 5                             | Rework | Discard | Average |
| Rework                                      | 0,833  | 0,833   | 0,833   |
| Discard                                     | 0,167  | 0,167   | 0,167   |

Calculation of the average of the Criterion 6

| Rework economically viable? |        |         |         |
|-----------------------------|--------|---------|---------|
| C6- Criterion 6             | Rework | Discard | Average |
| Rework                      | 0,100  | 0,100   | 0,100   |
| Discard                     | 0,900  | 0,900   | 0,900   |

## 2.8 Definition of preferences for each criterion

Table 9: Averages of the alternatives for each criterion which is the array of preferences

| ALTERNATIVES | CRITERIA |       |       |       |       |       |
|--------------|----------|-------|-------|-------|-------|-------|
|              | C1       | C2    | C3    | C4    | C5    | C6    |
| Rework       | 0,667    | 0,100 | 0,750 | 0,100 | 0,833 | 0,100 |
| Discard      | 0,333    | 0,900 | 0,250 | 0,900 | 0,167 | 0,900 |

## 2.9 Comparison between criteria

Table 10: Matrix of comparison between the criteria

| CRITERIA |                                             | C1              | C2                                         | C3                                          | C4                    | C5                                          | C6                          |
|----------|---------------------------------------------|-----------------|--------------------------------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------------|
| C1       | Problem Solved?                             | Problem Solved? | History of occurrence in the end customer? | Is occurring currently in the end customer? | Rework plan approved? | Company has all the capabilities to rework? | Rework economically viable? |
| C1       | Problem Solved?                             | 1               | 4                                          | 2                                           | 2                     | 2                                           | 1/5                         |
| C2       | History of occurrence in the end customer?  | 1/4             | 1                                          | 1/4                                         | 1/4                   | 1/4                                         | 1/5                         |
| C3       | Is occurring currently in the end customer? | 1/2             | 4                                          | 1                                           | 1                     | 1                                           | 1/5                         |
| C4       | Rework plan approved?                       | 1/2             | 4                                          | 1                                           | 1                     | 1                                           | 1/5                         |
| C5       | Company has all the capabilities to rework? | 1/2             | 4                                          | 1                                           | 1                     | 1                                           | 1/5                         |
| C6       | Rework economically viable?                 | 5               | 5                                          | 5                                           | 5                     | 5                                           | 1                           |
| SUM      |                                             | 7,75            | 22,00                                      | 10,25                                       | 10,25                 | 10,25                                       | 2,00                        |

## 2.10 Normalization and average of the criteria

Table 11: Normalization and average of the comparison between the criteria

## 2.11 Calculation to obtain the preference index for the alternatives

Table 12: Indexes of preference of the alternatives from the averages of the alternatives by criterion and average of the comparison between the criteria

| ALTERNATIVES | CRITERIA |       |       |       |       |       | Average of the Criteria | Result      |
|--------------|----------|-------|-------|-------|-------|-------|-------------------------|-------------|
|              | C1       | C2    | C3    | C4    | C5    | C6    |                         |             |
| Rework       | 0,667    | 0,100 | 0,750 | 0,100 | 0,833 | 0,100 | 0,166                   | <b>0,34</b> |
| Discard      | 0,333    | 0,900 | 0,250 | 0,900 | 0,167 | 0,900 | 0,042                   | <b>0,66</b> |

## 2.12 Consistency check

Table 13: Total of the entries from the comparison between the criteria and the average of the comparison between the criteria

| CRITERIA | C1    | C2    | C3    | C4    | C5    | C6    | X | Average of the Criteria | = | TOTALS |
|----------|-------|-------|-------|-------|-------|-------|---|-------------------------|---|--------|
| C1       | 1,000 | 4,000 | 2,000 | 2,000 | 2,000 | 0,200 | X | 0,166                   | = | 1,0668 |
| C2       | 0,250 | 1,000 | 0,250 | 0,250 | 0,250 | 0,200 | X | 0,042                   | = | 0,2577 |
| C3       | 0,500 | 4,000 | 1,000 | 1,000 | 1,000 | 0,200 | X | 0,107                   | = | 0,6643 |
| C4       | 0,500 | 4,000 | 1,000 | 1,000 | 1,000 | 0,200 | X | 0,107                   | = | 0,6643 |
| C5       | 0,500 | 4,000 | 1,000 | 1,000 | 1,000 | 0,200 | X | 0,107                   | = | 0,6643 |
| C6       | 5,000 | 5,000 | 5,000 | 5,000 | 5,000 | 1,000 | X | 0,473                   | = | 3,1094 |

Table 15: Random Index according to the number of criteria

| Random Index (RI)      | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Dimension of the array | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
| Random consistency     | 0,00 | 0,00 | 0,58 | 0,90 | 1,12 | 1,24 | 1,32 | 1,41 | 1,45 | 1,49 | 1,51 | 1,48 | 1,56 | 1,57 | 1,59 |

Table 14: Maximum eigenvalue from the totals of the entries and average of the comparison between the criteria

| Calculation of the Maximum eigenvalue ( $\lambda_{max}$ ) |                         |           |
|-----------------------------------------------------------|-------------------------|-----------|
| Totals                                                    | Average of the Criteria | Result    |
| 1,0668 /                                                  | 0,1660                  | = 6,4253  |
| 0,2577 /                                                  | 0,0418                  | = 6,1637  |
| 0,6643 /                                                  | 0,1065                  | = 6,2375  |
| 0,6643 /                                                  | 0,1065                  | = 6,2375  |
| 0,6643 /                                                  | 0,1065                  | = 6,2375  |
| 3,1094 /                                                  | 0,4726                  | = 6,5788  |
| Sum                                                       |                         | = 37,8803 |
| Average ( $\lambda_{max}$ )                               |                         | 6,3134    |

Table 16: Consistency Result

|                   |    |        |
|-------------------|----|--------|
| CONSISTENCY INDEX | CI | 0,0627 |
| CONSISTENCY RATIO | CR | 0,0445 |
| CONSISTENCY       |    |        |

### 3. Results and discussion

Table 17: Final result of the application of the AHP Method in the case of study considering the comparison of the Alternative Discard with the Alternative (1) Rework to remove the cord for new welding.

| Goal                                                                                                                           | Dimension | Attributes/Criteria                         | Responses of flow Analysis |    | Weight AHP |         | Alternatives |         |  |
|--------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------|----------------------------|----|------------|---------|--------------|---------|--|
|                                                                                                                                |           |                                             | Yes                        | No | Yes        | No      | (1) Rework   | Discard |  |
| Reduce the cost of quality, mainly with internal and external flaws (depending on the external impact of rework in the field). | Quality   | Problem Solved?                             | 1                          | 0  | 2          | 9       | 2            | 1       |  |
|                                                                                                                                |           | History of occurrence in the end customer?  | 1                          | 0  | 9          | 2       | 1            | 9       |  |
|                                                                                                                                |           | Is occurring currently in the end customer? | 0                          | 1  | 9          | 3       | 3            | 1       |  |
|                                                                                                                                |           | Rework plan approved?                       | 0                          | 1  | 4          | 9       | 1            | 9       |  |
|                                                                                                                                | Cost      | Company has all the capabilities to rework? | 1                          | 0  | 5          | 9       | 5            | 1       |  |
|                                                                                                                                |           | Rework economically viable?                 | 0                          | 1  | 9          | 9       | 1            | 9       |  |
| INDEX/RESULT                                                                                                                   |           |                                             |                            |    |            | 0,34    | 0,66         |         |  |
|                                                                                                                                |           |                                             |                            |    |            | DISCARD |              |         |  |

## 4. Conclusions

---

- The applied method assisted in the decision to discard the parts in this study.
- AHP method - allowed the systematization of the decision process.
- This type of model can be used in other quality problems involving the destination of defective products.
- The contribution of this work is the adaptation of the AHP method to the application of problems of this type, using questions and answers.
- The format can be adapted to the reality of other companies with inclusion or exclusion of criteria and weightings as necessary.

# 6. References

Amiri, M. P. (2010). Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods. *Expert Systems with Applications*, 37(9), 6218–6224. <http://doi.org/10.1016/j.eswa.2010.02.103>

Arabian, T., Jourabchi, M., Leman, Z., & Ismail, M. (2013). A Research on the Impact of Cost of Quality Models and Reporting System on Managing Cost of Quality. *International Proceedings of Economics Development and Research*, 55(36), 178–183. <http://doi.org/10.7763/IPEDR>

Bentes, A. V., Carneiro, J., da Silva, J. F., & Kimura, H. (2012). Multidimensional assessment of organizational performance: Integrating BSC and AHP. *Journal of Business Research*, 65(12), 1790–1799. <http://doi.org/10.1016/j.jbusres.2011.10.039>

Bulut, E., Duru, O., Keçeci, T., & Yoshida, S. (2012). Use of consistency index, expert prioritization and direct numerical inputs for generic fuzzy-AHP modeling: A process model for shipping asset management. *Expert Systems with Applications*, 39(2), 1911–1923. <http://doi.org/10.1016/j.eswa.2011.08.056>

Büyüközkan, G., & Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry. *Expert Systems with Applications*, 39(3), 2341–2354. <http://doi.org/10.1016/j.eswa.2011.08.061>

Cebeci, U. (2009). Fuzzy AHP-based decision support system for selecting ERP systems in textile industry by using balanced scorecard. *Expert Systems with Applications*, 36(5), 8900–8909. <http://doi.org/10.1016/j.eswa.2008.11.046>

Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. *European Journal of Operational Research*, 95(3), 649–655. [http://doi.org/10.1016/0377-2217\(95\)00300-2](http://doi.org/10.1016/0377-2217(95)00300-2)

Cheek, N. N., & Schwartz, B. (2016). On the meaning and measurement of maximization. *Judgment and Decision Making*, 11(2), 126–146. <http://doi.org/10.1007/BF02722112>

Chopra, A., & Garg, D. (2011). Behavior patterns of quality cost categories. *The TQM Journal*, 23(5), 510–515. <http://doi.org/10.1108/17542731111157617>

Crosby, P. B. (1979). Quality is free: The art of making quality certain. *New York: New American Library*. <http://doi.org/10.2172/1025774>

Dağdeviren, M., Yavuz, S., & Kılıç, N. (2009). Weapon selection using the AHP and TOPSIS methods under fuzzy environment. *Expert Systems with Applications*, 36(4), 8143–8151. <http://doi.org/10.1016/j.eswa.2008.10.016>

Das, M. C., Sarkar, B., & Ray, S. (2012). A framework to measure relative performance of Indian technical institutions using integrated fuzzy AHP and COPRAS methodology. *Socio-Economic Planning Sciences*, 46(3), 230–241. <http://doi.org/10.1016/j.seps.2011.12.001>

Davies, M. A. P. A. P. (1994). A multicriteria decision model application for managing group decisions. *The Journal of the Operational Research Society*. Retrieved from <http://www.jstor.org/stable/2583950>

Dweiri, F., Kumar, S., Khan, S. A., & Jain, V. (2016). Designing an integrated AHP based decision support system for supplier selection in automotive industry. *Expert Systems with Applications*, 62, 273–283. <http://doi.org/10.1016/j.eswa.2016.06.030>

Fogliatto, F. S., & Albin, S. L. (2003). An AHP-based procedure for sensory data collection and analysis in quality and reliability applications. *Food Quality and Preference*, 14(5–6), 375–385. [http://doi.org/10.1016/S0950-3293\(03\)00006-5](http://doi.org/10.1016/S0950-3293(03)00006-5)

Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. *European Journal of Operational Research*, 108(1), 165–169. [http://doi.org/10.1016/S0377-2217\(97\)00244-0](http://doi.org/10.1016/S0377-2217(97)00244-0)

Gopalani, R., Sreekanth, & Satpathy, B. (2015). Evaluation of retail service quality – a fuzzy AHP approach. *Benchmarking: An International Journal*, 22(6), 1058–1080.

http://doi.org/10.1016/j.mcm.2007.03.022

http://doi.org/10.1016/j.ijmavsc.2015.6202

Juran, J. M., & Godfrey, A. B. (1999). *Juran's Quality Handbook*. Deutsche medizinische Wochenschrift 1946 (Vol. 1). <http://doi.org/10.1055/s-0031-1280544>

Kaya, T., & Kahraman, C. (2011a). An integrated fuzzy AHP-ELECTRE methodology for environmental impact assessment. *Expert Systems with Applications*, 38(7), 8553–8562. <http://doi.org/10.1016/j.eswa.2011.01.057>

Kaya, T., & Kahraman, C. (2011b). Fuzzy multiple criteria forestry decision making based on an integrated VIKOR and AHP approach. *Expert Systems with Applications*, 38(6), 7326–7333. <http://doi.org/10.1016/j.eswa.2010.12.003>

Kilinçci, O., & Onal, S. A. (2011). Fuzzy AHP approach for supplier selection in a washing machine company. *Expert Systems with Applications*, 38(8), 9656–9664. <http://doi.org/10.1016/j.eswa.2011.01.159>

Kumar, S., & Vaidya, O. S. (2006). Analytic hierarchy process: An overview of applications. *European Journal of Operational Research*, 169(1), 1–29. <http://doi.org/10.1016/j.ejor.2004.04.028>

Mintzberg, H., Raisinghani, D., & Thérêt, A. (1976). The structure of “unstructured” decision processes. *Administrative Science Quarterly*, 21(2), 246–275. <http://doi.org/10.2307/2392045>

Ngai, E. W. T., & Chan, E. W. C. (2005). Evaluation of knowledge management tools using AHP. *Expert Systems with Applications*, 29(4), 889–899. <http://doi.org/10.1016/j.eswa.2005.06.025>

Ognjanović, I., Gašević, D., & Bagheri, E. (2013). A stratified framework for handling conditional preferences: An extension of the analytic hierarchy process. *Expert Systems with Applications*, 40(4), 1094–1115. <http://doi.org/10.1016/j.eswa.2012.08.026>

Oprićović, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. *European Journal of Operational Research*, 156(2), 445–455. [http://doi.org/10.1016/S0377-2217\(03\)00020-1](http://doi.org/10.1016/S0377-2217(03)00020-1)

Phillips, L. D. (1982). Requisite Decision Modelling: A Case Study. *The Journal of the Operational Research Society*, 33(4), 303–311.

Phillips, L. D. (1984). A theory of requisite decision models. *Acta Psychologica*, 56(1–3), 29–48. [http://doi.org/10.1016/0001-6918\(84\)90005-2](http://doi.org/10.1016/0001-6918(84)90005-2)

Plewa, M., Kaiser, G., & Hartmann, E. (2016). Is quality still free?: Empirical evidence on quality cost in modern manufacturing. *International Journal of Quality and Reliability Management*, 33(9), 1270–1285. <http://doi.org/10.1108/IJQRM-11-2014-0189>

Pophali, G. R., Chelani, A. B., & Dhadapkar, R. S. (2011). Optimal selection of full scale tannery effluent treatment alternative using integrated AHP and GRA approach. *Expert Systems with Applications*, 38(9), 10889–10895. <http://doi.org/10.1016/j.eswa.2011.02.129>

Rostamzadeh, R., & Sofian, S. (2011). Prioritizing effective 7Ms to improve production systems performance using fuzzy AHP and fuzzy TOPSIS (case study). *Expert Systems with Applications*, 38(5), 5166–5177. <http://doi.org/10.1016/j.eswa.2010.10.045>

Russo, R. D. F. S. M., & Camanho, R. (2015). Criteria in AHP: A systematic review of literature. *Procedia Computer Science*, 55(IJQM), 1123–1132. <http://doi.org/10.1016/j.procs.2015.07.081>

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. *Int. J. Services Sciences*, 1(1). Retrieved from [http://www.colorado.edu/geography/leyk/geog\\_5113/readings/saaty\\_2008.pdf](http://www.colorado.edu/geography/leyk/geog_5113/readings/saaty_2008.pdf)

Saaty, T. L., & Tran, L. T. (2007). On the invalidity of fuzzifying numerical judgments in the Analytic Hierarchy Process. *Mathematical and Computer Modelling*, 46(7–8), 962–975. <http://doi.org/10.1016/j.mcm.2007.03.022>

Sailaja, A., Basak, P., & Viswanadhan, K. (2015). Hidden Costs of Quality: Measurement & Analysis. *International Journal of Managing Value and Supply Chains*, 6(2), 13–25. <http://doi.org/10.5121/ijmvsc.2015.6202>

Sandoval-Chávez, D., & Beruvides, M. (1998). Using Opportunity Costs to Determine the Cost of Quality: A Case Study in a Continuous-Process Industry. *The Engineering Economist*, 43(2), 107–124. <http://doi.org/10.1080/0013791980903192>

Schiffauerova, A., & Thomson, V. (2006). A review of research on cost of quality models and best practices. *International Journal of Quality & Reliability Management*, 23(6), 647–669. <http://doi.org/10.1108/02656710610672470>

Simon, H. A. (1977). *The new science of management decision*. (Prentice Hall College Div, Ed.) (Revised ed). Prentice Hall College Div.

Singh, A. K. (2016). Competitive service quality benchmarking in airline industry using AHP. *Benchmarking: An International Journal*, 23(4), 768–791. <http://doi.org/10.1108/BIJ-05-2013-0061>

Soares, J. C., Sousa, S. D., & Nunes, E. (2012). Application of the Three Realities Approach to Customer Complaints Analysis in the Motorcycles Industry. *International Conference On Industrial Engineering and Operations Management 2012*, 1–10.

Sun, C. C. (2010). A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. *Expert Systems with Applications*, 37(12), 7745–7754. <http://doi.org/10.1016/j.eswa.2010.04.066>

Talib, F., & Rahman, Z. (2015). Identification and prioritization of barriers to total quality management implementation in service industry. *The TQM Journal*, 27(5), 591–615. <http://doi.org/10.1108/TQM-11-2013-0122>

Tan, R. R., Aviso, K. B., Huelgas, A. P., & Promentilla, M. A. B. (2014). Fuzzy AHP approach to selection problems in process engineering involving quantitative and qualitative aspects. *Process Safety and Environmental Protection*, 92(5), 467–475. <http://doi.org/10.1016/j.psep.2013.11.005>

Wallenius, J., Dyer, J. S., Fishburn, P. C., Steuer, R. E., Zonts, S., Deb, K., ... Steuer, R. E. (2008). Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead. *Management Science*, (June 2016), 1–32. <http://doi.org/10.1287/mnsc.1070.0838>

Water, H., & Vries, J. (2006). Choosing a quality improvement project using the analytic hierarchy process. *International Journal of Quality & Reliability Management*, 23(4), 409–425. <http://doi.org/10.1108/02656710610657602>

Weckenmann, A., Akkasoglu, G., & Werner, T. (2015). Quality management – history and trends. *The TQM Journal*, 23(3), 281–293. <http://doi.org/http://dx.doi.org/10.1108/TQM-11-2013-0125>

Xi, X., & Qin, Q. (2013). Product quality evaluation system based on AHP fuzzy comprehensive evaluation. *Journal of Industrial Engineering and Management*, 6(1), 356–366. <http://doi.org/10.3926/jiem.685>



# Thank you for your attention!