
Experimental Results of an Adaptive Resource Allocation
Technique to Stochastic Multimodal Projects

Anabela P. Tereso
anabelat@dps.uminho.pt
M. Madalena T. Araújo
mmaraujo@dps.uminho.pt
Universidade do Minho 4800-058 Guimarães PORTUGAL
Salah E. Elmaghraby
elmaghra@eos.ncsu.edu
North Carolina State University
Raleigh, NC 27695-7906 USA

Abstract. We describe the structure and the implementation aspects of the dynamic programming
procedure that was proposed in a previous report (Tereso et al., 2001) for the optimal resource
allocation to activities under the assumption of stochastic work content. We illustrate its
implementation to five projects of varying size, which exhibit the computational complexity of the
procedure. The pseudo-code may be obtained by request from the lead author.

Key Words: Operations Planning and Scheduling, Activity Networks, Resource Allocation,
Dynamic Programming

1 Introduction and Background

This paper reports on experimental results on an approach for the resolution of the problem of
adaptive resource allocation in stochastic multimodal project networks. The approach is based on a
dynamic programming (DP) model introduced in a previous paper by the same authors (Tereso et al.,
2001).

The problem tackled can be briefly stated as follows. We are given a multimodal activity network1 in
which the work content of each activity is defined as a random variable (r.v.) of known distribution
which may differ for different activities. The duration of the activity depends on its work content and
the amount of resource allocated to it (we assume a single resource that is demanded by all the
activities). It is desired to determine the optimal resource allocation to the activities of the project, so
that the total expected cost is minimized. This cost is composed of two parts: the cost of resource
utilization, assumed quadratic in the resource intensity, and a penalty for tardiness, assumed linear in
the tardiness2. To the best of our knowledge this problem has not been treated before. Contributions
to the classical ‘resource constrained project scheduling problem’ (RCPSP) and its variants are
numerous; the interested reader may wish to consult the two most recent books on the subject by
Demeulemeester and Herroelen (2002) and Neumann et al. (2002), and the references cited therein to
gain a complete picture of developments in that aspect of project scheduling.

1 That is, each activity can be performed in any number of levels of resource intensity applied to it, with resulting shorter
or longer duration.
2 Naturally, this presumes the prior definition of a due date for the completion of the project.

For simplicity of exposition and ease of computing we assume that the work content of each activity
is a continuous r.v. that is exponentially distributed. This has the salutary effect of rendering the
residual distribution of work content invariant with the passage of time of undertaking the activity,
thus avoiding the complications surrounding the determination of such distributions which are
probabilistic arguments that have little to do with the focus of the optimization procedure of interest
to us here. We also assume that the resource is a continuous variable that may be allocated in any
intensity within an interval between lower and upper bounds [l, u]. The availability of the resource is
abundant so that it does not impose any limitation on the number of activities that are in progress
simultaneously.

The DP model will be introduced using a simple example with only three activities as depicted in the
network of figure 1 (activity-on-arc representation).

Figure 1: Example network with its uniformly directed cutsets.

In this example the due date of the project is T = 14; and the unit cost per period tardy is cL = 2. The
resource allocation to each activity is denoted by ix for i = 1, 2, 3; with lower limit li = 0.5 and upper
limit ui = 1.5 for all i. The xi’s are the decision variables of this problem. The parameters { }iλ of the
distributions of the work content of the activities are as shown in (1).

Activity i : 1 2 3
 λi : 0.2 0.1 0.07 (1)

It is clear that at any point in time the manager must cope with a subset of activities that lie on a
uniformly directed cutset (u.d.c.). In this simple example there are only two u.d.c.’s: C1 = {1, 3} and
C2 = {2, 3}. To be sure, at the outset the project manager is concerned with activities 1 and 3, which
lie on C1. Then, depending on the progress in these two activities, he may eventually be concerned
with activities 2 and 3, which lie on C2. If the resource allocation to activity 3 is (temporarily) fixed
at, say, 3x̂ , the problem reduces to the optimal determination of the resource allocation to activities 1
and 2, which can be readily resolved by standard DP recursion. The set of “fixed” activities is
denoted by F; in this example F = {3}: Finally, searching over the values of x3 with repeated
optimization at each value would yield the (unconditional) optimum allocation to all three activities.
In general, our procedure determines the u.d.c.’s of the network (which define the stages of the DP
iterative scheme), and the cutset intersection index (c.i.i.), which represents the variables to be
(temporarily) fixed; see Tereso et al. (2001) for details.

We continue with our illustrative example without much detail for the sake of economy in space. The
expected resource cost of the fixed variables is denoted by rcf, which in this case is the expected cost
of activity 3

()
07.0
ˆ

ˆ 3
33

x
Wxrcf =⋅= ε , (2)

where W3 is the work content of activity 3, ε (W3) denotes its expected value, and 3x̂ the amount of
resource allocated to it. Reverse numbering of the DP stages yields

{ }()
[]

(){ }Uwxrcftf ε
x

ε2min3| 225.1,5.021
2

++==
∈

F (3)

where

U = max {0, Υ3 – T}, (4)
and

Υ3 = max {t2 +
3

3

2

2

ˆ
,

x
W

x
W }. (5)

The second and last stage would be defined as follows:

{ }()
[]

()[]{ }22115.1,5.012
1

min3|0 YfWxtf
x

εε +===
∈

F (6)

where

1

1
2 x

W
=Y . (7)

The solution for this network, obtained in 4.8 seconds3, is:

{ } { }0.1,0.1, *
3

*
1 =xx (8)

 with an expected cost of 45.53.

The optimal value of x2 depends on the state of node 2, when it is reached, and can be obtained by the
previously developed optimal policy for stage 1, as defined in equation (3).

It is evident that the Achilles heel of this DP approach resides in the definition of the state space of
the DP recursion and in the search over the “fixed” variables to determine the unconditional
optimum. Our pursuit for efficient ways to reduce these two aspects of the optimizing procedure to
manageable dimensions is the raison d’étre of this research.

2 The Application Development

This model was implemented in Matlab. The pseudo-code can be accessed on the internet4, or upon
request by e-mail5. In this section, we discuss the main issues that arose during the development of
this application.

3 The computer used to do the experimentations was a Pentium III, 650MHz, 128 MB.

2.1 Data Structure and Input Parameters

To allow the introduction of any network of arbitrary nodes and activities, we had to have a format to
store all the information of the network. This was accomplished by defining a structure (Net) where
each column represents an activity. This structure contains five fields which represent for each
activity, respectively, the origin node, the terminal node, the parameter λ (which can be replaced by
any set of parameters required to specify the probability distribution if it is different from the
exponential), the lower bound, and the upper bound on the resource allocation.

The main program of this application is Dp. This program begins with calling the InputNetwork
procedure, which allows the user to input the data for the project. These are: (i) the number of
activities of the network (n), (ii) the data that defines the activities. The program automatically
checks for correctness of the number of activities and for the uniqueness of an activity between any
two nodes; and (iii) the values of cL and T.

2.2 The Stages of the Dynamic Program

The number of stages of the DP iterations is the same as the number of decision variables. This is
determined by evaluating the longest path (by the number of activities) in the network. The variables
along this path define the set D of decision variables, and the complementary set of activities defines
the set F of “fixed” variables. To accomplish this, we constructed two procedures. The first is
DecisionVars, which determines the decision variables by determining the longest path in the
network. The second is the function SumNodesLen which evaluates the maximal length of paths to
reach a given node from the project start node. Next, another function is called that defines the nodes
that belong to the longest path (NodesLP) which, in turn, defines the stages of the DP iterations. This
process results, for the example in figure 1, in the following set of “nodes on the longest path”:
NLP = [1, 2, 3]. Finally, the decision variables are defined by the “activities on the longest path”.
The final result for the example in figure 1 is ALP = {1, 2}.

2.3 The Discretization of the Work Content

For the sake of computational feasibility, it is necessary to discretize each W, using k2 values (we
have opted for k2 = 4 values for all the activities), all of equal probability. The function that generates
these values is called GenerateW. The function receives the parameter λ of the exponential
distribution, and returns W, an array with 4 values. The mathematical formulation that evaluates
these four values is presented in the Appendix, and reflects the simplicity of the exponential
distribution.

2.4 Determination of Bounds on Node Realization Times

The evaluation of the minimal and maximal duration of each activity is accomplished using the
procedure Durations. Then it is possible to evaluate the bounds on the realization times of the
network nodes, using procedures GenerateTlimits and GenerateTvalues. The array Tlim contains the

4 www.eng.uminho.pt/~dps/anabelat (Topic: research).
5 anabelat@dps.uminho.pt

limits of the interval of the node realization times, and the array Tval stores, in one field, the
discretized list of the times of realization of the nodes. In another field, the “step” used between them
will also be stored.

Arrays Tlim(1) and Tlim(2) store the lower and upper limits on the node realization times,

respectively. The minimal duration of an activity is given by ,
max

min
min x

wY = and the maximal duration

is
min

max
max x

wY = . The Tlim’s are generated in the following way. For node 1, Tlim = 0. For the

following nodes, taken in topological order, their origins are determined, and the following formula
is applied (in which the notation ji π indicates node i immediately precedes node j):

{ } .,...,2;),()1(max)1(minlimlim mjjiYTT ijij =+=
π

 (9)

 (){ } .,...,2;),(2max)2(maxlimlim mjjiYTT ijij =+=
π

 (10)

Next, it is necessary to discretize the nodes realization times. For that purpose, a function
CalculateTvalues was constructed which, with the interval limits, generates a set of values and the
interval step between them. This is done for all the nodes, except the first and the last.

2.5 The DP Iterations

The code for implementing the DP iterations depends on the network topology and the derived
number of stages. If the network has N-1 stages6 and K fixed variables, we need a main program with
K nested cycles, one for each fixed variable. Inside each cycle we need to call N-1 different
procedures, one for each stage. The content of these procedures depends on the topology of the
network. This necessitates that one composes the code dynamically after the inputting of the network
parameters. We briefly describe the approach used to accomplish this task.

After determining the ALP (the activities on the longest path), we know how many stages there shall
be in the DP iterations. Initially, we generate the main program, using the procedure
generateMainCode. The instructions are then composed in the form of strings, with a fixed and a
variable part, namely the part for the cycles needed and the calling of the procedures that will
optimize each stage of the DP model.

The next step is to generate the file dps1, which is the procedure that evaluates the contribution for
stage 1 (the last stage in the network, which is the first stage in the DP iteration as we iterate
backwards). This procedure is different from the others (dpsn for n = 2, …, N-1), because it contains
the tardiness cost and the cost of the fixed resources. The procedure that generates this file is
generateDps1Code.

As described above, the state of the DP model is given by the times of realization of the origin nodes
(events) of the u.d.c. that defines the stage. Each u.d.c. contains one decision variable, by
construction; all other activities have their allocations “fixed”. For stage 1 (the final stage), they are
the origin nodes of the activities that terminate at the last node.

6 N is the number of notes

In stage 1, the activity to optimize is the last activity of the set ALP. After determining the origins of
the activities terminating at the last node, a cycle is initiated for each origin node (arranged
topologically) which now assumes the role of the last node, utilizing the realization times that have
been previously generated for its state nodes. This results in the determination of the time of
realization of the node under consideration as being the maximum of the times of realization of the
state nodes plus the duration of the corresponding activities (which depend on the resource
allocation). Then, for the activity containing the decision variable to optimize, one enumerates all its
possible values, determining the total expected cost (which includes the delay cost and the cost of the
resource, as well as the cost of the fixed resources). At the end, for every possible realization times
of the state, a minimal cost is evaluated.

The procedures that generates the remaining stages is called generateDpsNCode. This is a general
program that can be applied to generate the files { } 1

2
−
=

N
ndpsn .The instructions for this procedures are

similar. The procedure evaluates the cost of the resource for the decision variable, which is added to
the expected cost of the preceding stage.

As the coding was done in Matlab, to be able to use all the new files generated it is necessary to use
the instruction rehash, which puts them in memory. This way they will be ready to be called to
optimize the introduced network.

3 Examples

The program outlined above was implemented on a set of four projects that range in size from 5 to
18 activities. Due to limitation in space, these examples could not be presented here but they can be
seen in the internet7, or requested by e-mail8. For each project, we present the network and its
parameters, together with the solution given by the program. The solution times varied from a few
seconds to five days on a Pentium III, 650 MHz, 128 MB. The program output indicates the
“optimal” cost and the “best” values for the variables that emanate from node 1, as well as the “best”
values for the fixed variables. The values of the remaining decision variables depend on the state of
the project, at the time of the decision, and can be determined from the optimal policies developed
for the corresponding stage. The words optimal and best are put between quotation marks because
they are not the absolute optima and best due to the discretization of the work content and the times
of node realizations. Finer meshes may result in improved optima, at the price of (greatly) increased
computational effort.

These set of experiments were done to demonstrate “proof of concept”: armed with a powerful
computer the proposed model can be applied to any network. But for the larger ones, the time
necessary to get results is prohibitive with the facilities at our disposal. Our future research shall
focus on the development of approximations that do not detract much from the optimum, but are
more modest in their computing requirements.

7 www.eng.uminho.pt/~dps/anabela (Topic: research).
8 anabelat@dps.uminho.pt.

4 Complexity of the DP Model

The order of complexity of the DP model may be calculated as follows.

In a project containing A activities and N nodes, there are at most N-1 stages of the DP iterations
which correspond to the longest path. At each stage there are, on average, m=A/N source nodes.

If the time of realization of a node is discretized at 1k discrete points, there shall be mk1 states at each
stage. For each state one must consider 2k possible allocations of the resource. There are (A-N+1)
“fixed” activities, which gives rise to)1(

2
+−NAk enumerations to secure the unconditional optimum.

Therefore the complexity of the procedure is O ()()1
21 ... +−NAm kkmN . Since A is bounded from above by

N2, one can state the order of complexity as O ()2

21
2 .. NN kkN .

References

Adlaka, V.G., Kulkarni, V.G. (1989). A Classified Bibliography of Research on Stochastic PERT
Networks: 1966-1987. INFOR, Vol. 27, nº 3.

Angus, R.B., Gunderson, N.A. (1997). Planning, Performing, and Controlling Projects: principles
and applications. Prentice Hall, London.

Bellman, R.E. (1957). Dynamic Programming. Princeton University Press, New Jersey.

Bellman, R.E., Dreyfus, S.E. (1962). Applied Dynamic Programming. Princeton University Press,
New Jersey.

Burke, R. (1992). Project Management: planning and control.. 2nd ed., Wiley, Chichester.

Brooks, G.H., White, C.R. (1965). An Algorithm for Finding Optimal or Near Optimal Solutions to
the Production Scheduling Problem. Journal of Industrial Engineering, January-February Issue, 34-
40.

Christofides, N., Alvarez-Valdés, R., Tamarit, J.M. (1987). Project Scheduling with Resource-
Constraints: a branch-and-bound approach. European Journal of Operartional Research 29, 262-273.

Davis, E.W. (1973). Project Scheduling under Resource Constraints: historical review and
categorization of procedures. AIIE Transactions, Vol. 5, nº 4, 297-313.

Demeulemeester, E.L., Herroelen, W.S. (2002). Project Scheduling: A Research Handbook. Kluwer
Academic Publishers, Boston. ISBN 1-40207-051-9.

Elmaghraby, S.E. (1993). Resource Allocation via Dynamic Programming in Activity Networks.
European Journal of Operational Research 64, 199-215.

Elmaghraby, S.E., Fathi, Y., Taner, M.R. (1998). On The Sensitivity of Project Variability to
Activity Mean Duration. International Journal of Production Economics 62, 219-232.

Elmaghraby, S.E. (1977). Activity Networks - project planning and control by network models. John
Wiley and Sons, Inc., New York.

Elmaghraby, S.E. (2000). Optimal Resource Allocation and Budget Estimation in Multimodal
Activity Networks. Private Communication, North Carolina State University, Reileigh - North
Carolina - USA.

Held, M., Karp, R.M. (1962). A Dynamic Programming Approach to Sequencing Problems. Journal
of the Society for Industrial and Applied Mathematics, March.

Lewis, J.P. (1995). Project Planning, Scheduling & Control: a hands-on guide to bringing projects in
on time and budget. New York: McGraw-Hill.

Lewis, J.P. (1997). Fundamentals of Project Management. Amacon, New York.

The MathWorks, Inc (1997). Using Matlab.

Moder, J.J., Phillips, C.R., Davis, E.W. (1983). Project Management with CPM, PERT, and
Precedence Diagramming, 3d ed., Van Nostrand, New York.

Neumann, K., Schwindt, C., Zimmermann, J. (2002). Project Scheduling with Time Windows and
Scarce Resources. Springer-Verlag, Berlin. ISBN 3-540-4263-6.

Patterson, J.H., Slowinski, F.B., Talbot, F.B., Weglarz, J. (1989). An Algorithm for a General Class
of Precedence and Resource Constrained Project Scheduling Problems. In Slowinski, R., Weglarz, J.
(Eds). Advances in Project Scheduling. Elsevier, Amsterdam, 3-29.

Sprecher, A., Hartmann, S., Drexl, A. (1997). An Exact Algoritm for Project Scheduling with
Multiple Modes. OR Spektrum 19, 195-203.

Tereso, A.P., Araújo, M.M., Elmaghraby, S.E. (2001). Adaptive Resource Allocation in Multimodal
Activity Networks. Research Report, Universidade do Minho, Portugal, submitted for publication.

Tereso, A.P. (2002). Project Management - Adaptive Resource Allocation in Multimodal Activity
Networks. PhD Thesis, Universidade do Minho, Portugal.

Appendix

Assuming that W is exponentially distributed, with parameter 1.0=λ , then the probability density
function is given by (11),

tetp λλ −=)(with 1.0=λ . (11)

For 21 ttt ≤≤ , we must have, iteratively,

∫ =−= −−−2

1

12 /1
t

t

ttt Keedte λλλλ , (12)

initiated at 01 =t and terminated at ∞=2t , (13)

which immediately yields the desired values of the intermediate t2’s.

With 1.0=λ and according to the assumption of four values of W, all with the same probability
(=0.25), the t axis is divided into four zones, all with the same area under the curve, as depicted in
figure 2.

The limits for these four zones are 0, t1, t2, t3, ∞+ . The evaluation of t1, t2 and t3 is done by simple
inversion of the exponential function to yield,

t1=2.8768, t2=6.9315, t3=13.8629, (14)

which result in the intervals:

[0, 2.8768[; [2.8768, 6.9315[; [6.9315, 13.8629[; [13.8629, ∞]

Figure 2: Exponential distribution divided in four zones, with the same area

The discrete probabilities will be positioned at the means of the intervals obtained above. The global
mean is known to be

Global Mean ∫
∞+

==
0

1)(
λ

dtttf . (15)

Similarly, the partial means are evaluated using the expression (16), because the area corresponds to
a probability of 0.25.

Segment Mean [] dtttftt
ti

tjji ∫=)(
25.0
1, . (16)

So, we have the discrete work content values:

,3695.11 =w 7675.42 =w , 0000.103 =w , 8629.234 =w (17)

The program confirms the correctness of these evaluations by comparing the Global Mean to the
mean of the Segment Means. The mean of the four values in (17) is indeed equal to the global mean







 ==

+++
101

4
4321

λ
wwww

, having all equal probability and being representative of the

exponential distribution. These are the values that are going to be evaluated by the function
GenerateW.

