On The Multi-Mode, Multi-Skill Resource
Constrained Project Scheduling Problem — A
Software Application

Moénica A. Santos!, Anabela P. Tereso?

Abstract We consider an extension of the Resource-Constrained Project Schedul-
ing Problem (RCPSP) to multi-level (or multi-mode) activities. Each activity must
be allocated exactly one unit of each required resource and the resource unit may
be used at any of its specified levels. The processing time of an activity is given
by the maximum of the durations that would result from a specific allocation of
resources. The objective is to find the optimal solution that minimizes the overall
project cost which includes a penalty for tardiness beyond the specified delivery
date as well as a bonus for early delivery. We give some of the most important so-
lution details and we report on the preliminary results obtained. The implementa-
tion was designed using the C# language.

1 Introduction

This paper is concerned with an extension of the Resource-Constrained Project
Scheduling Problem (RCPSP) which belongs to the NP-hard class of problems. In
the several resource constrained scheduling problem models found in the litera-
ture, there are two important aspects present in any model: the objective and the
constraints. The objective may be based on time, such as minimize the project du-
ration, or on economic aspects, such as minimize the project cost. However, suc-
cess relative to time does not imply success in economic terms. Often, time-based
objectives are in conflict with cost-based objectives. A recurrent situation encoun-
tered in practice is the need to complete a project by its due date and maximize
profit. Ozdmar and Ulusoy [1] reported in their survey of the literature, studies
where the NPV is maximized while the due date is a “hard’ constraint (Patterson et
al. [2][3]). There are several other multi-objective studies in the literature where ef-
ficient solutions regarding time and cost targets are generated. Guldemond et al.
[4] presented a study related to the problem of scheduling projects with hard dead-
line jobs, defined as a Time-Constrained Project Scheduling Problem (TCPSP).
They used a non-regular objective function.

Researchers agree that a project cannot be insulated from its costs, or executed

! University of Minho, 4800-058 Guimardes, Portugal Email: pgl3713@alunos.uminho.pt
2 University of Minho, 4800-058 Guimardes, Portugal Email: anabelat@dps.uminho.pt

mailto:pg13713@alunos.uminho.pt
mailto:anabelat@dps.uminho.pt

2

without the scheduling of activities. As the costs depend on the activities in pro-
gress and scheduling is related to other constraints than monetary, the researchers
explicitly included cash-flows-resources-constraints in their formulations. Elma-
ghraby and Herroelen [5] lay down the following property of an optimal solution
that maximizes the NPV: the activities with positive cash flows should be sched-
uled as soon as possible and those with negative cash flow as late as possible.
They concluded that the faster conclusion of the project is not necessarily the op-
timal solution with regard to maximizing the NPV. In Mika et al. [6] study, a posi-
tive flow is associated to each activity. The objective is to maximize the NPV of
all cash flows of the project. They use two meta-heuristics that are widely used in
research: Simulated Annealing (SA) and Tabu Search (TS).

Tereso et al.’s research ([7][8][9][10][11][12]) is included in the minimum-cost
class problems. Tereso et al. [7] implemented a dynamic programming model for
multimodal activities projects, with stochastic work content using Matlab. A re-
cent metaheuristic, the Electromagnetism-Like Mechanism (EM), developed by
Birbil and Fang [13], was implemented in Tereso et al. [8] in Matlab for the same
class of projects, obtaining improved results, although authors mention that the
computational performance could still be improved. Such improvement was pre-
sented later in Tereso et al. [9] with an enhanced implementation using the JAVA
programming language. In Tereso et al. [10][11] a dynamic programming model
was developed on a distributed platform, with better results in terms of computing
performance than the previous implementation in Matlab. Another application to
the same problem may also be found in Tereso et al. [12].

Constraints complicate the efficient optimization of problems, and the more
accurately they describe the real problem, the more difficult it is to handle it. Re-
cent models include most of the requirements described by Willis [14] for model-
ing realistic resources. These requirements include the variable need of resources
according to the duration of the activities, variable availability of resources over
the project duration and different operational modes for the activities.

A discrete time/resource function implies the representation of an activity in
different modes of operation. Each mode of operation has its own duration and
amount of renewable and non-renewable resources requirement.

Boctor [15] presented a heuristic procedure for the scheduling of non-
preemptive resource-limited projects, although renewable from period to period.
Each activity had a set of possible durations and resource requirements. The ob-
jective was to minimize the project duration. A general framework to solve large-
scale problems was suggested. The heuristic rules that can be used in this frame-
work were evaluated, and a strategy to solve these problems efficiently was de-
signed. Heilmann [16] also worked with the multi-mode case in order to minimize
the duration of the project. In his work, besides the different modes of execution
of each activity, there is specified a maximum and minimum delay between activi-
ties. He presented a priority rule-based heuristic. Basnet [17] presented a “filtered
beam” search technique to generate makespan minimizing schedules, for multi-
mode single resource constrained projects, where there is a single renewable re-
source to consider and the multi-mode consists essentially of how many people
can be employed to finish an activity.

In a previous paper [18] we provided a formal model to the multi-mode, multi-

3

skill resource constrained project scheduling (MRCPSP-MS) problem and a
breadth-first procedure description, for an optimal allocation of resources in a pro-
ject, with multi-mode activities, minimizing its total cost, while respecting all the
restrictions. We implemented a procedure using the object oriented paradigm lan-
guage, JAVA and achieved the optimal solution for a simple 3 activities project
network, by obtaining all possible solutions and search the best between them. The
plan was to complete an adaptation of a “filtered beam” search algorithm to this
problem in the future; this report addresses this issue.

1.1 Problem description

Consider a project network in the activity-on-arc (AoA) mode of representation:
G = (N,A), with |[N| = n (representing the events) and |A| = m (representing
the activities). Each activity may require the simultaneous use of several resources
with different resource consumption according to the selected execution mode -
each resource may be deployed at a different level. It is desired to determine the
optimal resources allocation to the activities that minimizes the total cost of the
project (resources + penalty for tardiness + bonus for earliness). We follow the
dictum that an activity should be initiated as soon as it is sequence-feasible.

There are |R| = p resources. A resource has a capacity of several units (say w
workers or m/c’s) and may be used at different levels, such as a ‘resource’ of elec-
tricians of different skill levels, or a ‘resource’ of milling machines but of different
capacities and ages. A level may also be the amount of hours used by a resource;
for example, half-time, normal time or extra-time. An activity normally requires
the simultaneous utilization of more than one resource for its execution.

The problem presented here belongs to the class of the optimization scheduling
problems with multi-level (or multi-mode) activities. This means that the activities
can be scheduled at different modes, each mode using a different resource level,
implying different costs and durations. Each activity must be allocated exactly one
unit of each required resource and the resource unit may be used at any of its spec-
ified levels. The processing time of an activity is given by the maximum of the du-
rations that would result from a specific allocation of the resources required by the
activity. The objective is to find the optimal solution that minimizes the overall
project cost, while respecting a delivery date. Briefly, the constraints of this prob-
lem are:

e Respect the precedence among the activities.

e A unit of the resource is allocated to at most one activity at any time at a particular level
(the unit of the resource may be idle during an interval).

e Respect the capacity of the resource availability: The total units allocated at any time
should not exceed the capacity of the resource to which these units belong.

e An activity can be started only when it is sequence-feasible and all the requisite re-
sources are available, each perhaps at its own level, and must continue at the same levels
of all the resources without interruption or preemption.

4

Figure 1 presents the mathematical model for the problem. For more information
on this model refer to our previous paper [18].

Let: Minimize TC

G(N,A): Project network in AoA representation, with a set of N nodes, Subject to:

representing the events and A activities.
n: number of nodes; n = |N|. pla) =p(a,r,) foralla,rand]

« m:number of arcs or number of activities; m = |A|.
ti—t; =Zp(a)va €A

a: activity, which may also be represented by arc (i, j).

+ r:resource 7 € [R|
Z x@,r,p < bVr €R

+ ¥ the kth uniformly directed cutset (udc) of the project network that is 4
aec

traversed by the project progression; k = 1,... . K.

I: level at which a resource is applied to an activity. x(a r [) =1va,¥r €R
LTl =1, ,

* Xig,r - abinary variable, of value 1if resource r is allocated to activity a at Forail

level I, and 0 otherwise.
+ pla,D): the processing time of activity a when resource ris allocated at level [. Na — xa,r,D=0va €C¥
« p(a): processing time of the activity a (considering all resources). TER foralll
« cfa,r,1): resource cost of activity a when resource ris allocated at level I. Where:
. resource cost of the activit; considering all resources).

cpla) y a g) TC = €y + Cp
+ 1, the count of resources required by activity a.
* p:number of resources, p = |R|.

' g =) exla)
« b, : capacity of resource r ach

¥(r,1): : marginal cost of resource r at level [.
* ¥, : marginal gain from early completion of the project. cr=cgter=yprety -d

+ y, : marginal loss (penalty) from late completion of the project.

cpla) = z e(a,r,1)

t; : time of realization of node i (AoA representation), where node 1 is the “start

TER
node” of the project and node n its “end node”.
+ T.:target completion time of the project. cla,r) = y(r, 1)« p(a.r. 3]
* ¢p: earliness cost.
e 2T —t,
* ¢y tardiness cost.
gy earliness-tardiness cost. d>t,—T,
* ¢y : total resource cost for all project activities.
+ TC: total cost of the project e,d=0

Fig. 1 Mathematical Model

2 Solution Details

The initial procedure we adopted, applied to a small project, was based in a
breadth first search (BFS) algorithm. All the nodes (partial solutions) in the search
tree were evaluated at each stage before going any deeper, subsequently imple-
menting an exhaustive search that visits all nodes of the search tree. This strategy
can be applied for small projects but becomes infeasible for larger ones.

The branch and bound (BaB) search technique allows reducing the number of
nodes being explored. It can be seen as a polished breadth first search, since it ap-
plies some criteria in order to reduce the BFS complexity. Usually it consists of
keeping track of the best solution found so far and checking if the solution given
by that node is greater than the best known solution. So if that node cannot offer a
better solution than the solution obtained so far, the node is discarded. The BaB

5

process consists of two procedures: subset generation and subset elimination. The
former (the subset generation) is accomplished by branching, where a set of de-
scendent nodes, form a tree-like structure. The latter (subset elimination) is real-
ized through bounding, where upper and lower bounds are calculated for the “val-
ue” of each node. The bounding function can be strong, which is usually harder to
calculate but faster in finding the solution, or weak, which is easier to calculate but
slower in finding the solution. The BaB approach is more efficient if the bounds
can be made very tight. In our case, the objective of our problem is to minimize
the total cost of the project, that gets a bonus or a penalty cost while respecting or
exceeding the specified due date; respectively. As a result, finding a strong bound-
ing function would depend on the three project parameters cited: the penalty cost,
bonus cost and due date. The feat of the bounding function is simply in reducing
the search while not discarding potentially desirable branches. A “filtered beam”
search is a heuristic BaB procedure that uses breadth first search but only the top
“best” nodes are kept. At each stage of the tree, it generates all successors for the
selected nodes at the current stage, but only stores a predetermined number of de-
scendent nodes at each stage, called the beam width. This paper is concerned with
the study of the adaptation of the initial algorithm, presented below, to a “filtered
beam” search procedure.

2.1 Procedure description

The procedure to be executed can be based either on the BFS algorithm or on the
Beam Search Algorithm. If the latter is the one adopted a beam width value must
be defined. We consider that activities can be in one of four states: “to begin”,
“pending”, “active” and “finished”. To get the first activities with which to initiate
the process, we search all activities that do not have any predecessors. These ac-
tivities are set to state “to begin”. All others are set to the state “pending”.
Activities in the state “to begin” are analyzed in order to check resources

availability. If we have enough resources, all activities in the state “to begin” mod-
ify the state to “in progress”, otherwise we apply, in sequence, the following rules,
until resources conflict are resolved:

1. Give priority to activities that are precedent of a larger number of “pending activities”.

2. Give priority to activities that use fewer resources.

3. Give priority to activities in sequence of arrival to the state “to begin”.

An “event” represents the starting time of one or more activities and the project
begins at event 0. Each activity must be allocated exactly one unit of each re-
source. For each active activity, we calculate all the possible combinations of re-
sources levels. Then we join all activities combinations, getting the initial combi-
nations of allocation modes for all active activities. These initial combinations
form branches through which we will get possible solutions for the project. All

6

combinations have a copy of resources availability information, and activities’
current state.
If the algorithm set to find the best solution is the Beam Search Algorithm,

then:

1.

2.

If the number of combinations is less than the beam width value, all com-
binations are kept.
Otherwise, the set of combinations must be reduced to the beam width
value. In this case some combinations need to be discarded using a de-
fined rule to evaluate the ones in the top best. The possible rules for se-
lection are:
Select top best combinations that have:

— Minimum Duration.

— Minimum Cost.

— Minimum Cost/Duration.

In either case, we continue applying the following procedure to each combination:

3.

4.

9.

To all activities in progress, we find the ones that will be finished first,
and set that time as the next event.

We update activities found in step 1 to state “finished”, and release all the
resources being used by them.

. For all activities in the state “to begin”, we check if they can begin, the

same way we did when initiating the project. Activities in the state “to
begin” are analyzed in order to check resources availability. If there are no
resource conflicts, all activities in the state “to begin” are set to state “ac-
tive” and resources are set as being used, otherwise we apply in sequence,
the rules described above.

. For all activities in the state “pending”, we check for precedence relation-

ships. For all activities that are precedence-feasible their state is updated
to state “to begin”. These activities aren’t combined to the previous set of
“to begin” activities to give priority to activities that entered first in this
state.

. If there are resources available, and any pending activities were set “to

begin” we apply step 5 again.

. For all new activities “in progress” we set their start time to the next event

found in step 3, and determine all the possible combinations of its re-
sources levels. Then we join all found combinations for these activities,
getting new combinations to join to the actual combination being ana-
lyzed. This forms new branches to process in order to get the project solu-
tion.

We continue by applying step 1 (or 3) to each new combination until all
activities are set to state “finished”.

10. Once all activities in a combination are set to state “finished”, we have a

valid project solution.

7

When the project final solutions are found, we evaluate, for each one, the finishing
time of the project and the total project cost, choosing the best one.

The BaB and the Beam Search procedures are typical methods applied to the
RCPSP. The differentiating aspects of our approach are, on one hand the defini-
tion of the set of states followed by the activities, combined with the priority rules
used to solve resource conflicts, and on the other hand the alternative evaluation
rules used to discard undesirable “branches”.

2.2 Application Development

The software was developed in C# language using Visual Studio 2010. To con-
struct the project network (in AoN), we use Graph#, an open source library for
Net/WPF applications that is based on a previous library QuickGraph. These li-
braries support GraphML that is an XML-based file format for graphs, although
we didn’t make use of this format. The graph is automatically generated for each
project loaded in the application. To save/load existing projects we define an xm/
file that embodies all project characteristics for this problem.

2.1.1 Data Model

Three main classes were defined for the application. The base class is NetProject
that keeps all project required information: name, activities, resources, due date,
bonus and penalty cost. Then we have the Resource class that keeps the resource
identification availability and levels. Each resource level has a unitary cost. The
Activity class has activity identification, resources requirement and its precedents.
The referred classes are the most relevant to represent the project, additional clas-
ses are used to support the evaluation of the project solution.

2.2.2 Functionalities

The application provides the functionalities described next.

e [oad a Project.
— The project must be saved as an xml file, using a structure that represents the project
components (activities, resources, etc.).
e Create a Project:
— There are two main steps to create a new project:

o First the project “skeleton” is built through a wizard that initiates asking the project
name and the number of resources and activities. Next the resource data is introduced
namely the availability of each resource and the number of associated levels. Finally

the activities information is introduced namely the identification and precedents of
each activity.
o Secondly it generates the project graph and a project grid where the remaining project
information can be introduced.
e Edit/Save a Project.
e Determinate best solution:
— This can be achieved using a BFS based Algorithm or a Beam Search Algorithm.

e Save solution to a txt file.

We present next the application look, using some prints.

per | [dmn =) [Fwoen]

E!iéi’
e

Fig. 2 Application prints

3 Preliminary results

The next computational tests were performed on an Intel® Pentium® M
@1.20GHz 1.25GB RAM.
Consider the following data (table 1) for a three activities network.

Table 1 Resource Requirements, Processing Times and Resource Costs of the Project.

RESOURCE — 1 2 3 4
AVAILABILITY 2 1 3 2

| Activity \ Levels — 1 2 1 2 3 1 2 3 1 2 3
Unitary costs 2 4 3 5 7 1 4 5 1 3 5 77;
Al (Processing time) 14 6 - - - - 12 8 5 18 12 7
Al(Resource cost) 28 | 24 | - - - - 12 | 32 | 25 18 | 36 | 35 }
A2(Processing time) - - - 7 5 3 - - - 8 5 4
A2(Resource cost) - - - | 21 25 | 21 - - - 8 15 | 20 §
A3(Processing time) 20 [12 [- | 22 16 10 - - - - - - 5
A3(Resource cost) 40 | 48 | -] 66 | 80 | 70 - - - - - -

Assume the following rates for earliness and lateness costs: ,_ =—-10, y, =20
and the due date T, = 24 .

Using the BFS Algorithm the project obtained solution is presented in table 2.

Table 2 Solution totals, obtained using BFS Algorithm.

t Ce Cr Ce TC Runtime (ms)
16,0 80,0 0,0 230 150,0 66

Since the due date was 24, a bonus is applied. Activities execution modes are:

e Activity Al - Start: 0 End: 12 Duration: 12 Cost: 71
| R1 Level 2 (Cost: 24 Duration: 6) | R3 Level 1 (Cost: 12 Duration: 12) | R4 Level 3 (Cost: 35 Duration: 7)
e Activity A3 - Start: 0 End: 12 Duration: 12 Cost: 118
| R1 Level 2 (Cost: 48 Duration: 12) |R2 Level 3 (Cost: 70 Duration: 10)
e Activity A2 - Start: 12 End: 16 Duration: 4 Cost: 41
| R2 Level 3 (Cost: 21 Duration: 3) | R4 Level 3 (Cost: 20 Duration: 4)

Table 3 Solution totals, obtained using Beam Search Algorithm.

Evaluation Type

5 Cost Duration Cost/Duration

2

5 P £ g~
2| S| S| < 2 § Bl | S| S| 5| 8 £ Bl | S| S| 5| 8 i £

~ 4 ~

150 | 26 [o | 40 | 201 241 33 16 | g0 | o | 230 150 | s2 2 | o 40 | 201 241)
200 | 26 [o | 40 | 201 241 48 16 | 80 | o | 230 150 | 68 26 | 0 40 | 201 241 69
700 | 20 | 40 | o | 240 | 200 | 253 16 | g0 | o | 230 150 | 309 |20 | 40 | 0 20 | 200 | 372
90 | 16 [80 | 0 | 231 151 419 16 | g0 | o | 230 150 | 482 16 | 80 | 0 231 151 607

The BFS Algorithm generates 972 combinations for the three activity network.
We used a beam width between 150 and 900. As we can see by the results exhibit-
ed in table 3, the duration evaluation type was the best for this network, achieving
the same result as the BFS Algorithm, even with the lowest beam width. The other
evaluation types gave both the same result.

4 Conclusions

We developed a practical tool, useful to represent multi-mode projects, and to find
a solution for the problem on hand — select the best mode for each resource in each
activity in order to minimize the total cost, considering the resource cost, a penalty
for tardiness and a bonus for early completion. We must continue testing the tool,
in order to evaluate the quality of the solution obtained, since the heuristic used
doesn’t guarantee the optimum. Further experiments will also allow specifying the
limits of its applicability in terms of the number of activities, the number of re-
sources, and the number of alternative levels of resource application. Another use-
ful effort is to compare as well the solutions obtained with both algorithms, trying
to define a recommended “beam width” and evaluation type.

10

References

1. Ozdamar L, Ulusoy G (1995) A Survey on the Resource-Constrained Project Scheduling
Problem. IIE Transactions 27:574-586.

2. Patterson JH, Slowinski R, Talbot FB, Weglarz J (1989) An algorithm for a general
class of precedence and resource constrained scheduling problems. Advances in Project
Scheduling Amsterdam 3-28.

3. Patterson JH, Talbot FB et al (1990) Computational experience with a backtracking
algorithm for solving a general class of precedence and resource constrained
scheduling problems. Eur J Oper Res 49:68-7.

4. Guldemond T, Hurink J, Paulus J, Schutten J (2008) Time-constrained project schedul-
ing. J Sched 11(2):137-148.

5. Elmaghraby SE, Herroelen WS (1990) The scheduling of activities to maximize the net
present value of projects. Eur J Oper Res 49:35-40.

6. Mika M, Waligora G, Weglarz G (2005) Simulated annealing and tabu search for multi-
mode resource-constrained project scheduling with positive discounted cash flows and
different payment models. Eur J Oper Res, 164 (3):639-668.

7. Tereso AP, Aratijo MM, Elmaghraby SE (2004) Adaptive Resource Allocation in Mul-
timodal Activity Networks. Int J Prod Econ 92:1-10.

8. Tereso AP, Aratijo MM, Elmaghraby SE (2004) The Optimal Resource Allocation in
Stochastic Activity Networks via The Electromagnetism Approach. Ninth International
workshop on PMS’04 Nancy-France 26-28.

9. Tereso AP, Araujo MM, Elmaghraby SE (2009) Optimal resource allocation in stochas-
tic activity networks via the electromagnetic approach: a platform implementation in Ja-
va. Control Cybern 38:745-782.

10.Tereso AP, Mota JR, Lameiro RJ (2005) Adaptive Resource Allocation Technique to
Stochastic Multimodal Projects: a distributed platform implementation in JAVA.
IFORS'05 Honolulu-Hawaii-USA 11-15.

11.Tereso AP, Mota JR, Lameiro RJ (2006) Adaptive Resource Allocation Technique to
Stochastic Multimodal Projects: a distributed platform implementation in JAVA. Con-
trol Cybern 35:661-686.

12.Tereso AP, Costa L, Novais R, Aratijo MM, (2007) The Optimal Resource Allocation in
Stochastic Activity Networks via the Evolutionary Approach: a platform implementation
in Java. ICIESM 2010 Beijing China.

13.Birbil SI, Fang SC (2003) An Electromagnetism like Mechanism for Global Optimiza-
tion. J Global Optim 25:263-282.

14.Willis RJ (1985) Critical path analysis and resource constrained project scheduling theo-
ry and practice. Eur J Oper Res 21:149-155.

15.Boctor FF (1993) Heuristics for scheduling projects with resource restrictions and sever-
al resource-duration modes. Int J Prod Res 31:2547-2558.

16.Heilmann R (2001) Resource—constrained project scheduling: a heuristic for the multi—
mode case. OR Spectrum 23(3):335-357.

17.Basnet C, Tang G, Yamaguchi T (2001) A Beam Search Heuristic for Multi-Mode Sin-
gle Resource Constrained Project Scheduling. Proceedings of the 36™ Annual ORSNZ
Conference Christchurch NZ Nov-Dec 1-8.

18.Santos MA, Tereso AP (2010) On the Multi-Mode, Multi-Skill Resource Constraint Pro-
ject Scheduling Problem (MRCPSP-MS). EngOpt 2010 Lisbon Portugal September 6-9.

