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Infroduction

» Project - onetime endeavor aiming to reach a predefined goal.
» Imperative - project manager (and team) - necessary skills - best tools - get it right the first fime.

» Project managers face increasing challenges - projects become more complex - higher levels
of uncertainty.

« This collides with - demand to deliver on time - without additional costs.

« Method af hand - use the available resources to work more within the same time unit:
- additional costs (overtime) or
- no additional cost managed in an ad-hoc way.

Need for further support to project managers to cope with these increasing demands.



The problem

« How can a project manager develop and control a plan that is duration minimal and is
simultaneously able to cope with uncertainties?

* Divide the question such that the plan can cope with uncertainty:

- What is the impact in the project duration regarding the scheduling technique usede
- How can an optimal or near optimal schedule be produced to cope with uncertainty?

(Focus: address the first question)



Literature review

Dealing with uncertainty:

PERT: no resource constraints (insufficient to model most “real world” projects);
Optimization of resource allocation in projects considering stochastic work contents;
RCPSP: unable to cope with uncertainties (fixed duration activities);

SRCPSP: optimizes coping with random activity duration but has no baseline schedule;

Proactive/Reactive scheduling:
- Proactive: generate arobust baseline schedule (robust resource allocation, buffer insertion);

- Reactive: correct the schedule if disruptions occur.

The method to explore




Methodology

To assess the impact of the scheduling model in the resources allocated to a project, the following
parameters were used:

« Testset: psplib J30 (RCPSP) instances;

« Solution methods:

- Optimal solutions: DH branch and bound algorithm.
- Heuristic method: SSGS (Serial Scheduling Generation Scheme) with the priority rules:

LIN (Lowest Job Number); RND (Random);

SPT (Shortest Processing Time); LPT (Longest Processing Time);

MIS (Most Immediate Successors); MTS (Most Total Successors);

LNRJ (Least Number of Related Jobs); GRPW (Greatest Rank Positional Weight);
EST (Earliest Start Time); EFT (Earliest Finish Time);

LST (Latest Start Time); LFT (Latest Finish Time);

MSLK (Minimum Slack); GRWC (Greatest Resource Work Content);

GCRWC (Greatest Cumulative Resource Work Content).

-  Comercial tool: Microsoft Project 2013.

Note: Allimplemented solution methods were coded in Microsoft Visual C++ 2012



Results: Project duration span
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MsP  Vertical lines inside the chart represent SSGS schedule duration dispension (min to max)
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Project duration summary
Deviation from optimal duration
Optimal
. |B & SSGS with defined priority rule
durationis | € 2 "
5 S o | Q] o
used as S o = R e e R % é = e | s | & é 21 2| %
reference A P R R R - = | O | Q| S
O | =
Max 129 | 37 | 45 49 39 36 26 34 36 31 37 | 30 30 39 39 35 44
Average 59 | 596 |783(10,55| 7,71 | 6,11 422671650 |574|7,25|331 3,67 |6,12|739]|6,72]|6,13
Min 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Max% 44% | 63% | 57% | 51% | 48% | 32% | 49% | 52% | 44% | 46% | 33% | 34% | 49% | 60% | 57% | 53%
Average% 9% | 13% | 17% | 12% | 10% | 7% | 11% | 10% | 9% | 12% | 5% | 6% | 9% | 12% | 11% | 9%
Min% 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | O% | O% | O% | O% | 0% | O%
Mx=(max(d; — dope)) Average=(2"Cert) Min=(min(d; — dope))
Mox%=(max(d; — dop)/ dope) ~ Averaged=(=E=eCet)  Min%=(min(d; — dopt) /dopt]

480




O __
SHCE
AvVerage resources
Required Avadilable % Unused ( A"ai“t:’i:ﬂ‘aifeq“ired )
R1 R2 R3 R4 R1 R2 R3 R4 R1 R4 R3 R4

Optimal | 570,66 | 583,46 | 574,56 | 581,99 |1160,78|1171,60{1161,13[1161,61| 52,00% | 51,50% | 51,96% | 50,78%

Best SSGS | 570,66 | 583,46 | 574,56 | 581,99 |1191,42(1202,88|1192,46|1192,24| 53,54% | 53.05% | 53,48% | 52,36%

MSProject | 570,66 | 583,46 | 574,56 | 581,99 |1263,46(1276,71(1265,40(1264,40] 56,42% | 55,97% | 56,40% | 55.27%




Conclusions

Results show that the scheduling solution method greatly influences the project's duration - the
most commonly used scheduling techniques present poor results even considering small
projects.

Even using non-optimal schedules, projects do, more than often, overrun their estimated
duration, while having unused resources (not available at the right time).

This means that additional efforts are needed to make them more resistant to failure - make
them more robust.

This study is a starting point to address the problem of transforming a given schedule into a
more robust one to attain better behavior when unforseen events occur during project
execution.
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Future work

Schedule robustness can be enhanced by combining the concepts of Flexible Resources and
Proactive/Reactive scheduling ...

... by redistributing resources in order to accelerate critical activities at the expense of slowing
down non-critical actfivities.

Achieved by keeping activity start times - assuming that resources are "flexible" - their "per unit
of time" work capacity can vary from their predefined nominal value (az°™).

— +
a1 —ap) <ap <a’"(1+ay)
a; is the effective resource availability;

a; /a; is the maximal decrease/increase of resource k availability per time unit.

Slow down activities with slack by using its resources in a reduced availability mode - critical
activities executed at a faster rate - using its resources at an increased availability mode.

Critical activities will have then a time buffer that can be used to cope with eventual increases
iIn their work content to avoid them to delay the project.
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