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tion - Problem Definition

ty network under stochastic conditions, we
rce allocation in order to minimize the cost

Wi ~ Exp(A7)

ion: 0K/ <o) <up <o0
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Project Planning

AOA Representation

AOA representations do not have any dummy activities

The AoA networks are directed acyclic graphs with only one initial node and
one and only one final node

The resource cost is fixed throughout the project execution

The resources are abundant

Single resource Multiple resources

SRPCO models MRPCO models
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on = New Premises and Objectives

New premises

ell determined set of resources available.
can consume only a subset of the project resources.
dependent from each other.

Objectives

g multiple resources projects. One per each
rogramming, electromagnetic algorithm
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mplementation Timeline

DPA + EMA + EVA
®

JAVA

Concurrent programming
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Strategies - Behavior of an Activity

SRPCO models MRPCO models

(Single Resource Project Cost Optimization models) (Multiple Resources Project Cost Optimization models)

- Each activity has its own work -Each resource has its own work
content content

- In the MRPCO models, each resource will have its own
work content and allocation constraints according to each
activity’s needs
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DEation Strategies - Impact of Resource Multiplicity

activity is associated an individual duration, evaluated
milar to the SRpPCO model

e maximum of those individual ones
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pend more of a resource (and incur a higher cost) to have
resource less than its duration under another resource.
[ hus, it is desired to have

dom variables involved
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Allogation Strategies - Quantity Oriented Strategy

» The QORAS (Quantity Oriented Resource Allocation Strategy) starts from the equality of
individual durations in expectation.

» Rearranges the equation so that the resources are all expressed relative to one of them -
the “base” resource.

W(}, W:()I
| Yo

a a
£Z 1 £z 2

. & Wy
a 2 (. a : . -
<~ Ty = —] T1; Ty base resource

E (W

* The remaining allocations are immediately known through knowledge of the “base”
resource allocation (considering expectations, there are no longer random variables).

a

* Despite its simplicity and intuitive appeal, this strategy needs frequent corrections to the
allocations in order to ensure that they remain in their feasible regions and the
proportionality relations between them are preserved.

» This corrective mechanism becomes increasingly complex and hard to implement as the
number of resources per activity increases. Furthermore, this strategy fails in situations

_ Wwhere the desired equality is impossible to realize.
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Results Conclusions References

B Duration interval % Filtered duration interval
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one interval the desired equality is fully satisfied. Else, it
er value.

interval are used to retrieve the allocation vector (of the
h of them.

to the selected interval, are put equal to their minimum

implemented. Its algorithms experience exponential
resources. But, it copes rather well with any number
e equality of individual durations is impossible to
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agies - Waste Balanced Strategy

ource Allocation Strategy) we establish a mechanism that
urations.

moment when a resource ceases to be needed to the end
enance time”, then we are able to quantify the inequality of

arry maintenance fees: storage, lifetime decline, etc.
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Waste Balanced Strategy

Extended activity concept New factor: maintenance

Project Cost (sum of two components)

Resource Allocation Cost Resource Maintenance Cost

New Assumption

This strategy must be applied to those projects being explicitly “maintenance aware”
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> ocation Strategy Election

- Easy to generalize - Straightforward

QORAS

. Intuitive

- Exponential - Introduces a new
complexity factor in the cost

- Hard to generalize

optimization

Elected Strategy

WBRAS - Waste Balanced Resource Allocation Strategy
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. closely depends from the activity’s duration.

:\ ation vector, we will describe this relationship through the
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Yo = {1,4}, sp = 0.5

Y1 Yo P3¢ = max(yq, Y2, ¥3) S s — ) Dq

11 2 ) 12— 1)+ 052 —1)+2(2—2)] (2, 1.5)
1 1 3 3 3 (3,3)
1 4 2 4 7 (4,7)
1 4 3 4 5 (4,5)
2 1 2 ) 0.5 (2,0.5)
2 1 3 3 y (3,2)
2 4 2 4 6 (4,6)
2 4 3 4 4 (4,4)

)
o
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(activity duration).

he real distribution and it improves with increase in the

e complexity to the evaluation of the realization of a
not only with the realization time but with the

es (dynamic programming) are vectors of pairs

ussions of the above constructions.
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le realization estimation

Let the picture aside be a portion of an AoA network
and suppose that we are in a state composed by the

nodes / and /. We want to estimate the realization
(time and maintenance cost) of the node k.

ow the distributions for the activities 6 and ¢ which
But then we need to specify that transition. Thus
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» realization estimation

Suppose state s; = { (a4, 5;), (5, 55) }:

EngOpt2008 - Brazil 01-05 June 2008 21



Introduction

Allocation
Strategies

2rL9r6dis?

Optimization
Models

noqgs|e

e realization estimation

The actual estimation on the realization of the node
will be determined from one of two scenarios:

* The node is already contemplated on the state.
Therefore nothing is to be determined (its realization
is already known)

ate. In this case we must set its realization time as
ontributions and add all the maintenance costs

\.u- | V(C
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Let Pbe the AoA network part preceding node &, with
each element representing a predecessor node and
the activity on the arc connecting it to node k.

In the example aside, that would be P ={(/,0),(/,b)}
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lels - Dynamic Programming Based

» realization estimation

Bpi = {(T+1,1),(T+3,0)} = {(8,1), (10,0)}

blip = {(4+1,0),(4+2,1)} = {(5,0),(6,1)}
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dels - Global Optimization Based

\/gorithm) implementations will rely on the Monte Carlo

l . This will drop the random nature of the variables and the
l rward.
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JAVA Implementation
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Application

nplemented in JAVA 1.6.
ine application integrates all the models and

AOA Representation

anipulation contemplating
mber of resources.
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Distributions

oximate discrete distributions of a continuous one.

|
)

ven interval.

m df (discrete) distributions.

Combinatorics

vidi'n,g linear addressing of all the possible
ber of\partitioned variables.

olex nesthg for cycles, we can simply go
he last, determmlstlcally and linearly.

b

ly subsets of the
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JAVA Implementation

i emented in their natural recurrence order. That
normally followed by the dynamic programming.

e allocation vectors of all activities posed a
ectors on a single vector suitable for the
structed back to the initial form.

ial imperative-oriented form to an
tion of new features like the
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JAVA Implementation

Parallelism exploitation

plication runs before giving the final (better)
processed concurrently.

nction value evaluation usually is not
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 All tests were made with a computer with CPU Duo T7300 and 2GB RAM running Windows
Vista. The JAVA virtual machine is version 1.6 at 64 bits.

« All tests still running after 5 hours were canceled.
» All the project resources have the allocation interval ranging from 0.5 to 1.5 units.

» The tests cover the DPA, EMA and EVA at both single-thread (linear programming) and multi-
thread (concurrent programming).

» For EMA and EVA two different configurations were used: one for sample size (k) of 500 and
other with k=5000.

» The DPA used a sample size of 4 for the work contents.

* The results under single-thread and multi-thread were consistent with each other. For
brevity, only one set of results is shown (those resulting from the single-thread runs).

» The allocation vectors components are in the same order as the index of the resources. On
DPA the allocation vector of the decision activities are represented with braces, instead of
parenthesis.
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activity) Unit cost

C Sr
1.0 0.0
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RESUILS = Project A.a (statistics and results)

EMA EVA
k=5000 k=500 k=5000

0:01.450 00:00:05.445 00:00:01.294 00:00:04.977

00.889 00:00:03.385 00:00:01.450 00:00:03.728

as Cost

(1.0) 43.7

).851) 37.531
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Unit cost

C, S,
1.0 1.0
2.0

EngOpt2008 - Brazil 01-05 June 2008 36



Introduction

Allocation
Strategies

2[1.9(6d162

Optimization JAVA
— Implement! : :
noqgsj2 b 010

[SV8]=

t A.b (statistics and results)

EMA
k=5000

0:02.910 00:00:12.745

01.436 00:00:07.285

as

(0.5)

(0.5)

k=500
00:00:02.106

00:00:01.779

EVA
k=5000
00:00:09.790

00:00:06.193

Cost
113.147

84.742

EngOpt2008 - Brazil 01-05 June 2008 37



Allocation Optimization

Introduction Strategies Models

2c1.9(6d162 pogs|2

Der activity) Unit cost

C, S,
1.0 1.0
1.1 2.0
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it A.c (statistics and results)

EMA EVA
k=5000 k=500 k=5000

0:07.660 00:00:58.812 00:00:03.978 00:00:29.160

04.410 00:00:31.153 00:00:03.339 00:00:16.680

as Cost

Aborted

(0.64,0.504,0.64)
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0.07 0.03 0.04
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Unit cost
Cr SI’
1.0 0.0

_
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't B.a (statistics and results)

EMA EVA
k=5000 k=500 k=5000

0:04.461 00:00:34.351 00:00:03.270 00:00:18.189

02.808 00:00:16.707 00:00:02.714 00:00:11.123

ag a Cost

(1.5) 205.541

7)  (1.053) (1.319) 209.€
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Unit cost

¢, S,

1.0 1.0

1.1
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't B.b (statistics and results)

EMA EVA
k=5000 k=500 k=5000

00:01:05.208 00:00:04.524 00:00:35.318

00:00:33.150 00:00:03.572 00:00:19.516

dg

(1.0)

(0.658) (1.104,0.966)
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Unit cost

C, S,

0.02 0.04 0.07 1.0 1.0

0.04 1.1
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't B.c (statistics and results)

EMA EVA
k=5000 k=500 k=5000

0:10.904 00:01:32.493 00:00:05.522 00:00:48.126

05.709 00:00:49.470 00:00:03.915 00:00:24.757

dg

(0.564,0.564,0.939) (1.4
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Conclusions

» For small networks with few resources, the DPA is acceptable and even faster than the GOA.

» The DPA quickly rises to run times above 5 hours, while the GOA stay within few seconds to a
couple of minutes (even for large k).

» The EVA is the algorithm with better overall performance.

» All the implementations (DPA and GOA) achieve better performance when they are executed
on a concurrent platform.

» The resulting allocations and objective function values obtained by the several algorithms are
consistent with each other.

* The large k=5000 showed no improvement on the results of GOA.

* The actual implementation of DPA is not suitable for practical tests; while the GOA represent
a good alternative in both performance and results.
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