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Abstract

Previous developments from the first author and other researchers were made on devising models for the total cost
optimization of projects described by activity networks under stochastic conditions. Those models only covered
the single resource case.

The present paper will discuss the case of multiple resources. More precisely, we introduce a strategy of allocation
of those resources in order to minimize the waste arising from their latent idleness on their consumption within
the same activity. With this strategy we will start from the possible durations yielded by each resource and devise
the allocation vector leading to equal durations.
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List of Acronyms

RCPSP: Resource Constraint Project Scheduling Prob-
lem
AoA: Activity-on-Arc
r.v.: random variable
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EVA: Evolutionary Algorithm
SRpco: Single Resource Project Cost Optimization
MRpco: Multiple Resources Project Cost Optimization
DOras: Duration Oriented Resource Allocation Strategy
WBras: Waste Balance Resource Allocation Strategy

1 Introduction

This paper follows the research made by several contributions starting with the research by the first
author (see [1]). These works address a version of the RCPSP (Resource Constraint Project Scheduling
Problem) in which we wish to determine the optimal allocation of resources to the project’s multimodal
activities that minimizes the total project cost under stochastic conditions.
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We adopt the AoA (Activity-on-Arc) network representation of the project. By ’multimodal activity’ we
mean an activity which duration is a function of the resource allocation. We assume that stochasticity
resides in the work content of the activity, denoted by W , which is a r.v. (random variable). The first
attempt at the resolution of this problem proposed a DP (Dynamic Programming) model [2] which was
implemented in Matlab. Subsequent research improved the computational aspects of the model by mi-
grating it to Java [6]. Another Matlab implementation using the EMA (Electromagnetic Algorithm) [3]
was also migrated to Java [7]. Then, the use of the EVA (Evolutionary Algorithm) was applied to the
same problem [5].

All these implementations, however, treated only the SRpco (Single Resource Project Cost Optimization)
case where the total project cost C is specified as

C = E

[∑
a∈A

(c × xa ×Wa) + cL ×max
0,Υn − T

] (1)

where the following notation applies:

A: Set of project activities;

c: Quantity (of resource) cost per unit

cL: Project delay cost per time unit

xa ∈ IR+: Allocated quantity of resource on activity

a such la 6 xa 6 ua

Wa ∼ Exp (λa): Work content of activity a

Υn: Evaluated realization time of last node

T : Schedule project realization time

In this paper we address the MRpco (Multiple Resources Project Cost Optimization) problem in which
each activity may require several resources for its execution. Each activity a will have its work content,
W a

r for resource r, r ∈ Ra, and its allocation constraints according to its needs.

The immediate impact of resource multiplicity is to modify the total project cost C of Eq. (1) to

C = E

[∑
a∈A

∑
r∈Ra

(cr × xa
r ×W a

r ) + cL ×max
0,Υn − T

] (2)

where the extended notation applies:

Ra: project resources subset needed by activity a

cr: quantity cost per unit of resource r

xa
r ∈ IR+: allocated quantity of resource r on activ-

ity a such la
r 6 x

a
r 6 ua

r

W a
r ∼ Exp (λa

r): Work content of resource r on ac-
tivity a

To each resource allocation to an activity is associated an individual duration Y a
r evaluated by

Y a
r =

W a
r

xa
r

(3)

from which we deduce that the actual activity duration, Ya, is the maximum:

Ya = max
r∈Ra

Y a
r

 (4)

Clearly, Y a
r is a r.v., so is Ya. Since it makes little sense to expend more of a resource (and incur higher

cost) to have the activity duration under this resource shorter than its duration under any other resource,
it is desired to have all durations equal. The probabilistic nature of the Y a

r ’s forces us to pose this condition
in terms of expectations; thus we require that

E [Y a
r ] = E [Y a

s ] , ∀r, s ∈ Ra and ∀a ∈ A (5)

To determine the allocation vectors that satisfy such equality we propose the following strategy, which
we label as DOras (Duration Oriented Resource Allocation Strategy).
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2 Duration Oriented Strategy

Instead of trying to equalize the individual expected durations through manipulation of the allocation
vector X to satisfy Eq. (5) the DOras determines which are the possible equal durations, then, it goes
backwards and devises the allocation vectors yielding those durations.

For each activity, we first evaluate the intervals of feasible durations yielded by each resource alone. Then,
the analysis of the intersection of such intervals leads to a final duration interval – the possible equal
durations – and the resources contributing to such durations. This then determines the allocation vectors
satisfying Eq. (5).

In order to enable more flexibility in the study of this new strategy, the DOras works directly with sets of
sample values instead of only the expected value. The explanation of the DOras procedure is given by a
sequence of running examples which provide both a demonstration of the steps of the procedure as well
as an analysis and discussion of the procedure itself.

Example – Part 1 of 8

We start this running example for DOras by supposing one activity a ∈ A with three resources indexed
by integer numbers from 1 to 3 (#Ra = 3). Below, the initial parameters are listed.

xa
i ∈ [0.5, 1.5] , i ∈ {1, 2, 3} λa

1 = 0.1 λa
2 = 0.2 λa

3 = 0.01 (6)

From those distribution parameters we evaluate the following 4-value samples of each W a
r .

W
a
1 = {1.37, 4.77, 10, 23.86}

W
a
2 = {0.68, 2.38, 5, 11.93}

W
a
3 = {13.7, 47.68, 100, 238.63}

(7)

Once the work content of each resource is sampled, we evaluate the range of possible durations for each
resource on each activity. These durations are determined when each sampled work content value of a
resource is fixed and all the possible allocations are used (of the same resource). The sampled are sets of
real intervals, each for every fixed value of Wa

r ,

Ya
r =

[
ωa

r

ua
r

,
ωa

r

lar

]
, ωa

r is a realization of W a
r , ∀r ∈ Ra, ∀a ∈ A (8)

For instance, the realization ωa
1 = 1.37 given above would give rise to (recall that 0.5 6 xa

1 6 1.5),

Ya
1 =

[
1.37
1.5

,
1.37
0.5

]
= [0.91, 2.74] (9)

The sample of the W a
r ’s given in Eq. (7) gives rise to the following sets of intervals:

{Ya
1} = {[0.91, 2.74] ; [3.18, 9.54] ; [6.67, 20] ; [15.91, 47.72]}

{Ya
2} = {[0.46, 1.37] ; [1.59, 4.77] ; [3.33, 10] ; [7.95, 23.86]}

{Ya
3} = {[9.13, 27.40] ; [31.78, 95.35] ; [66.67, 200] ; [159.09, 477.26]}

(10)

For ease on notation, all sets have their values in the same order as those within each Wa
r .

Having established the individual duration intervals corresponding to the sampled work contents, we
next seek the values that are common to all three resources since this would lead to the simultaneous
satisfaction of the equality of Eq. (5).

Let Ψr = {ψr,k} denote the set of intervals secured for resource r, ∀r ∈ Ra in which ψr,k is the individual
interval. For instance,

ψ1,1 = [0.91, 2.74] ; ψ1,2 = [3.18, 9.54] ; ψ1,3 = [6.67, 20] ; ψ1,4 = [15.91, 47.72] (11)
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and
Ψ1 = {ψr,k}4k=1 = {ψ1,1, ψ1,2, ψ1,3, ψ1,4} (12)

The desired result is defined by
Ya =

⋂
r

Ψr =
⋂
r,k

ψr,k (13)

Example – Part 2 of 8

Continuing the running example, we can easily find the sample values of Ya. This task becomes rather
laborious to execute by hand since the total number of intersections to be considered is equal to
43 = 64. Table 1 exhibits some of those 64 evaluations.

Table 1
DOras – Some sample values of Ya evaluated by simple intersection

ω1 ∈Wa
1 ω2 ∈Wa

2 ω3 ∈Wa
3 ψ1 ∈ Ya

1 ψ2 ∈ Ya
2 ψ3 ∈ Ya

3 ψ = ψ1 ∩ ψ2 ∩ ψ3

1.37 0.68 13.7 [0.91, 2.74] [0.45, 1.36] [9.13, 27.4] ∅
4.77 0.68 13.7 [3.18, 9.54] [0.45, 1.36] [9.13, 27.4] ∅
10.0 0.68 13.7 [6.67, 20.0] [0.45, 1.36] [9.13, 27.4] ∅
23.86 0.68 13.7 [15.91, 47.72] [0.45, 1.36] [9.13, 27.4] ∅
4.77 5.0 13.7 [3.18, 9.54] [3.33, 10.0] [9.13, 27.4] [9.13, 9.54]

10.0 5.0 13.7 [6.67, 20.0] [3.33, 10.0] [9.13, 27.4] [9.13, 10.0]

4.77 11.93 13.7 [3.18, 9.54] [7.95, 23.86] [9.13, 27.4] [9.13, 9.54]

Despite the simplicity (regardless of its computational burden) of the determination of the intersection
of two or more intervals, a new problem arises when the intersection is null. Such occurrence is the
norm rather than the exception and cannot be ignored because of its implication on the costs incurred
since smaller durations usually imply greater cost of the resources allocation. Coping with this situation
requires modification of Eq. (13). Insight into the required modification is gained by reference to our
running numerical example.

Example – Part 3 of 8

From the first row on Table 1, we can see one case where the intersection is null. A closer look into the
same row shows that, for example, ψ1,1 ∩ ψ2,1 6= ∅. This allows a new interpretation: resource 1 and
resource 2 can ensure equal individual durations while all three resources cannot. Thus, by testing each
one of the configurations (resources involved) we can check whether or not a (sub)set of resources can
yield non-null intersections instead of just consider the case with all resources. In other words, for each
combination of sample values of the Ya

r ’s we arrange them in all possible tuples (without repetition)
and check their intersection.

Table 2 compiles one search for all the non-null intersections among all the different configurations for
the case reported on the first row of Table 1.

From the seven evaluated intersections in Table 2, four are non-null. Also, by writing each configuration
as a set, the set of all the configurations contains 23 − 1 = 7 elements.

From the example, we establish a relation between all the possible intersections of the values and the
subset of the set constituted by them. Thus, we can rely on the power set to guide the evaluation process.
Recall that the power set of a set S – P (S) – is the set of all the subsets of S.

P (S) = {X |X ⊆ S} (14)

With the use of all the possible intersections, we now have a set of intervals per each sample value of Ya
r

and a question raises: What to do with each one of the sample values of Ya
r?
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Table 2
DOras – Test of all the configurations (an example)

(ψ1, ψ2, ψ3) Configuration (intersection) result

ψ1 [0.91, 2.74]

(ψ1 = [0.91, 2.74] ψ2 [0.45, 1.36]

, ψ3 [9.13, 27.4]

ψ2 = [0.45, 1.36] ψ1 ∩ ψ2 [0.91, 1.36]

, ψ1 ∩ ψ3 ∅
ψ3 = [9.13, 27.4]) ψ2 ∩ ψ3 ∅

ψ1 ∩ ψ2 ∩ ψ3 ∅

Let (ψ1, . . . , ψn) ∈
∏n

i=1 Ya
i , n = #Ra be one, arbitrarily fixed, combination of individual durations and

Ip implicitly defined as
p = {ψi | i ∈ Ip} ∈ P ({ψ1, . . . , ψn}) \ ∅ (15)

Which means that the set Ip captures the indexes of those resources contributing on a specific combination
from the fixated (ψ1, . . . , ψn), hence p ∈ P ({ψ1, . . . , ψn}) \ ∅.

Example – Part 4 of 8

As a simple example, on the fourth row of Table 2, we have p = {ψ1, ψ2} and Ip = {1, 2}

For the remainder of this section we present some observations on the form of propositions regarding the
DOras.

Proposition 2.1
∀p, q ∈ P ({ψ1, . . . , ψn}) \ ∅, Ip ∪ Iq = Ip∪q (16)

Consider also the following function
I (Ip) =

⋂
v∈p

v, Ip ∈ I∗ (17)

where
I∗ = {Ip | p ∈ P ({ψ1, . . . , ψn}) \ ∅} (18)

Proposition 2.2
∀Ip, Iq ∈ I∗ I (Ip ∪ Iq) = I (Ip) ∩ I (Iq) (19)

Example – Part 5 of 8

Using the newly defined function, we can rewrite the information on Table 2, about the partial inter-
sections. In place of the fourth row, we can write

I ({1, 2}) = ψ1 ∩ ψ2 = [0.91, 1.36] (20)

By using the function on Eq. (17), we can encapsulate all the possible partial intersections, for a given
(sample) value of Ya

, in one set.

L′a = {(Ip, I (Ip)) | Ip ∈ I∗ ∧ I (Ip) 6= ∅} (21)

Notice that we have cutoff all the elements that represent the null partial intersections. By doing so we
are intently discarding those configurations that do not yield equal durations. Thus, we apply a first filter
on the partial intersections, leaving only the ones that represent non-null durations yielded by at least
one resource.
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Example – Part 6 of 8

Using the set representation from Eq. (21), we can replace Table 2 by the set

L′a = { ({1} , [0.91, 2.74]) , ({2} , [0.45, 1.36]) ,

({1, 2} , [0.91, 1.36]) , ({3} , [9.13, 27.4])} (22)

We can observe that there are four partial intersections: 3 yielded by each resource alone and one
yielded by two resources. Furthermore, since the resources 1 and 2 can yield together equal durations,
is it useful to consider also the individual durations yielded by each one alone?

It is trivial that, on all circumstances
#L′a > #Ra (23)

since each individual duration (the ones evaluated per each resource) is always non-null. Thus, the set
L′a is somewhat larger than we may desire.

The goal of constructing L′a with the partial intersections is to evaluate a suitable equal time interval to
be a value of Ya; even when such equality is impossible to be absolute. Specially for this last case, it is
imperative to narrow down the L′a set. Next we will study the several scenarios posed by the L′a set and
detect non-significant elements. Finally will end with a final reasoning with the remaining intersections,
leading to a suitable sample value of Ya.

Proposition 2.3 Given (Ip, Dp) , (Iq, Dq) ∈ L′a

Dp ∩Dq 6= ∅ ⇒ (Ip ∪ Iq, Dp ∩Dq) ∈ L′a (24)

The Proposition 2.3 tells us that if two elements of L′a have their durations intersections non-null, then
there is in L′a the element which duration is that intersection. Furthermore, the property gives the
definition of such third element.

Proposition 2.4 Given (Ip, Dp) , (Iq, Dq) ∈ L′a

Ip ⊆ Iq ⇒ Dq ⊆ Dp (25)

The Proposition 2.3 shows how the set L′a “grows” and Proposition 2.4 gives that the more resources are
yielding a duration, the narrower this duration becomes. By using, until exhaustion, this last property,
we are able to select those partial intersections representing durations yielded by the largest possible
amount of resources. Thus, achieving the maximum consensus among the resources. In this way, the case
where the absolute equality of individual durations is possible, the process will result on a single partial
intersection – the one intersecting all the durations.

From the application, until exhaustion, of the Proposition 2.4, we get the set La.

La = L′a \ {(Ip, Dp) ∈ L′a | ∃ (Is, Ds) ∈ L′a \ {(Ip, Dp)} , Ip ⊂ Is} (26)

or, equivalently,
La = {(Ip, Dp) ∈ L′a | ∀ (Is, Ds) ∈ L′a \ {(Ip, Dp)} , Ip 6⊂ Is} (27)

Example – Part 7 of 8

The La for our example is obtained by removing the elements ({1} , [0.91, 2.74]) and ({2} , [0.45, 1.36])
of L′a since {1} ⊂ {1, 2} and {2} ⊂ {1, 2}, respectively. Thus,

La = {({1, 2} , [0.91, 1.36]) , ({3} , [9.13, 27.4])} (28)

On Fig. 1, there are graphical representations of the three typical examples of the possible L′a and La

sets that can be observed.

The calculations leading to each one of these situations will be presented on the next example.
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ψ

r1
r2

r3

r1, r2, r3

(a) Intersection non-null over all resources

ψ

r1
r2

r3

r1, r2
r3

(b) Intersection null over all resources (A)

ψ

r1
r2

r3

r1, r2
r1, r3

(c) Intersection null over all resources (B)

All intersections – L′a – are represented by overlaying the
intervals

The thicker lines map the resource set yielding each rep-
resented interval. La is represented below the overlay

Fig. 1. DOras – Graphical representation of the three typical situations for L′a and La sets

Proposition 2.5 Let (Ip, Dp) , (Iq, Dq) ∈ La:

(Ip, Dp) 6= (Iq, Dq)⇒ Dp ∩Dq = ∅ (29)

The Proposition 2.5 shows that all the durations (second component of the elements) in La are mutually
exclusive. This aspect is important because it allows us to look at the several durations as classes. In
other words, each duration interval, or class, is yielded by a specific resource subset and no other element
on La shares any of the same duration.

Remember that we have a different La set per each combination of the Wa
r values. Thus, with each La we

must derive a sample duration for the activity. This is typically the maximum of the individual durations.
So, since the exclusion property of the durations in La, we can elect the class with the greater durations
to be the sample value for the activity duration. This class will be named as critical class and referred
as K. Respectively, the subset of resources securing it will be referenced as IK.

Electing a critical class is not enough because we want to evaluate allocations for the durations. This is
only possible if we use the resources subset corresponding to it. But, there is no mutual exclusion with
the resources subsets in the La. So, it is required to analyze the three possible situations on IK (follow
with the situations on Fig. 1):

IK = Ra This case occurs when the intersection (of the individual durations) of all the activity resources
is non-null (see situation a). This is the ideal scenario. By construction of La, there is only one element
in it – the critical class. Therefore, nothing more has to be analyzed.

IK ∩ Ii = ∅, ∀ (Ii, Di) ∈ La \ {(IK, K)} This situation happens when all the classes have their re-
sources sets also mutually exclusive (see situation b). This means that the critical class is supported
by a subset of resources that do not support any other class. Thus, we have a exclusive set of resources
yielding the critical duration. Hence, any allocation on the other resources (of the other classes) gives
always durations smaller than those of the critical class. Which means that we can allocate any amount
of quantity to the resources of the “inferior” classes, without influencing the activity duration.

Therefore, it is only required to evaluate allocations for the resources on IK. All the others should
always be allocated to their lower bounds, ensuring smaller cost.

IK ∩ Ii 6= ∅, ∀ (Ii, Di) ∈ La \ {(IK, K)} On this scenario there are some resources that support more
than one class (see situation c). If none of those resources are in IK, the same reasoning of the previous
case applies. But, if some resources share more than one class, including the critical one, we must
evaluate allocations for them according to the critical class, since they are involved on the evaluation
of the activity duration. By doing so, we are discarding those allocations that yield the non-critical
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classes. This is not a problem since those do not influence the activity duration and are, actually, more
costly. For all the others not involved with K, we may proceed as above.

Putting all together, to evaluate a single value for the sample Ya – ψ, for one given combination of Ya
r

values, we must construct the corresponding La and in it, select the critical class K and the supporting
resources subset IK. In fact, each ψ will be the element of La that has the critical class.

Example – Part 8 of 8

In this final example, we will summarize the allocation process by giving three complete examples,
representative of each of the notable cases above; on the same context of this running examples. Recall
the chosen work content samples and the Eq. (10).

First Scenario (situation a) By picking the following samples of work content

ω1 = 10 ω2 = 11.93 ω3 = 13.7 (30)

it follows

ψ1 = [6.67, 20] ψ2 = [7.95, 23.86] ψ3 = [9.13, 27.4] (31)

From which,

L′a = { ({1} , ψ1) , ({2} , ψ2) , ({3} , ψ3) , ({1, 2} , [7.95, 20]) ,

({1, 3} , [9.13, 20]) , ({2, 3} , [9.13, 23.86]) ,

({1, 2, 3} , [9.13, 20])}
(32)

and

La = {({1, 2, 3} , [9.13, 20])} (33)

Thus, K = [9.13, 20] and IK = {1, 2, 3}. On Table 3 we have some allocation vectors from these data.

Table 3
DOras – Allocation example (a)

d ∈ K xa
1 = ω1/d x

a
2 = ω2/d x

a
3 = ω3/d

9.13 1.095 1.307 1.500 ω1 = 10.0

11.848 0.844 1.007 1.156 ω2 = 11.93

14.565 0.687 0.819 0.940 ω3 = 13.7

17.283 0.579 0.690 0.792 K = [9.13, 20]

20 0.500 0.597 0.685 IK = {1, 2, 3}

On this scenario it is possible to evaluate allocation vectors with no wasteful durations.

Second Scenario (situation b) This is the example that guided us until now.

ω1 = 1.37 ω2 = 0.68 ω3 = 13.7 (34)

it goes

ψ1 = [0.91, 2.74] ψ2 = [0.46, 1.37] ψ3 = [9.13, 27.4] (35)

From which,

L′a = {({1} , ψ1) , ({2} , ψ2) , ({3} , ψ3) , ({1, 2} , [0.91, 1.37])} (36)

and

La = {({1, 2} , [0.91, 1.37]) , ({3} , [9.13, 27.4])} (37)

Thus, K = [9.13, 27.4] and IK = {3}. On Table 4 we have some allocation vectors from these data. In
this case, there is only one resource responsible for the activity duration.
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Table 4
DOras – Allocation example (b)

d ∈ K xa
1 = la

1 xa
2 = la

2 xa
3 = ω3/d

9.13 0.5 0.5 1.500 ω1 = 1.37

13.695 0.5 0.5 1.000 ω2 = 0.68

18.261 0.5 0.5 0.750 ω3 = 13.7

22.826 0.5 0.5 0.600 K = [9.13, 27.4]

27.4 0.5 0.5 0.500 IK = {3}

Third Scenario (situation c) This time, by choosing

ω1 = 4.77 ω2 = 2.38 ω3 = 13.7 (38)

we have
ψ1 = [3.18, 9.54] ψ2 = [1.59, 4.77] ψ1 = [9.13, 27.4] (39)

From which,

L′a = { ({1} , ψ1) , ({2} , ψ2) , ({3} , ψ3) , ({1, 2} , [3.18, 4.77]) ,

({1, 3} , [9.13, 9.54])} (40)

and
La = {({1, 2} , [3.18, 4.77]) , ({1, 3} , [9.13, 9.54])} (41)

Thus, K = [9.13, 9.54] and IK = {1, 3}. On Table 5 we have some allocation vectors from these
data. Here, the allocations for the resource 1 are being guided by the critical class only, despite also

Table 5
DOras – Allocation example (c)

d ∈ K xa
1 = ω1/d x

a
2 = la

2 xa
3 = ω3/d

9.13 0.522 0.5 1.500 ω1 = 4.77

9.231 0.516 0.5 1.484 ω2 = 2.38

9.333 0.511 0.5 1.468 ω3 = 13.7

9.434 0.505 0.5 1.452 K = [9.13, 9.54]

9.54 0.500 0.5 1.436 IK = {1, 3}

supporting other class.

3 Discussion and Conclusion

The DOras deals well with an arbitrary number of resources. The all process is oblivious of the number of
resources. But, since it works down with all possible situations on a given context, that is also a drawback
of DOras – complexity.

To give an idea of the complexity of the DOras, let n be the number of resources of an activity and
p the number of sample values for the Wa

r . The process begins by sampling the work contents and
then walks trough all the combinations of sample values among the resources. Thus, pn combinations.
Then it computes all the possible intersections guided by the power set, giving 2n − 1 intersections per
combination. Thus, we have pn(2n − 1) elements already treated by DOras. Then, the process continues
by filtering redundant elements. This is done for each of possible elements and consists on an operation
where it may be required to test nearly all elements against one another! Notice the real implications
of this amount of operations when they must be carried for all the activities on a project, several times
during the optimization cycles.

You may think that if DOras was simplified by simply discard the null absolute intersections, the com-
plexity would fall down. It sure would help. But, there is another problem with DOras. And this one is
not easily avoided.
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Each resource supporting the critical class, is doing it using a portion of its allocation interval. But,
the resources do not contribute with the same ranges. The (quantity) allocations are therefore very
conditioned by that fact. If, at implementation phase, we make a uniform partition of the critical duration
(such as we have done with the last examples) we are incurring in a major bias on the evaluated quantities:
some contributing resources do so with nearly equal quantity amounts while others are more sparse. This
is dangerous because hides from the optimization process precious allocations that might result in better
final costs. Thus, instead of an uniform partitioning we must endorse a partitioning system sensible to
the contribution gap between the contributing resources. And this, alone, is very complex.

Despite being so complex, DOras, together with the ease of generalization, allows the identification of
situations when some resources may be redistributed. We consider the DOras a good exercise on the study
of the activities duration with multiple resources because it allows us a better insight about the allocation
implications on activity duration. Yet, we choose to diverge our search for another and much simpler and
computational friendly strategy, the WBras (Waste Balance Resource Allocation Strategy) presented last
year in EngOpt2008 [4].
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A Proofs of the propositions

Proof of Proposition 2.1

x ∈ Ip ∪ Iq ⇔ x ∈ Ip ∨ x ∈ Iq 〈def. ∪〉
⇔ ψx ∈ Ip ∨ ψx ∈ Iq 〈def. Ip and Iq〉
⇔ ψx ∈ p ∪ q 〈def. ∪〉
⇔ x ∈ Ip∪q 〈def. Ip and Iq〉

�

Proof of Proposition 2.2

I (Ip ∪ Iq) = I (Ip∪q) 〈Proposition 2.1〉
=

⋂
v∈p∪q

v 〈def. I (−) at Eq. (17)〉

=
⋂

v′∈p

v′ ∩
⋂

v′′∈q

v′′ 〈def. ∩ and def. ∪〉

= I (Ip) ∩ I (Iq) 〈def. I (−)〉

�



IESM 2009, MONTRÉAL - CANADA, May 13 - 15

Proof of Proposition 2.3
We want to prove that (Ip ∪ Iq, Dp ∩Dq) ∈ L′a. Since Dp ∪Dq 6= ∅ (by hypothesis), by definition of
L′a, that is equivalent to prove

I (Ip ∪ Iq) = Dp ∩Dq

I (Ip ∪ Iq) = I (Ip) ∩ I (Iq) 〈Proposition 2.2〉
= Dp ∩Dq 〈hyp. (Ip, Dp) , (Iq , Dq) ∈ L′a〉

�

Proof of Proposition 2.4

From the hypothesis we get:

(1) (Ip, Dp) ∈ L′a ⇒ Dp = I (Ip) =
⋂

v∈p v 6= ∅
(2) (Iq, Dq) ∈ L′a ⇒ Dq = I (Iq) =

⋂
v∈q v 6= ∅

Also, Ip ⊆ Iq ⇔ Ip = Iq ∨ Ip ( Iq. So we must
cope with two cases.

Case Ip = Iq then Dq = Dp, trivially by defini-
tion of I (−).

Case Ip ( Iq then Iq = Ip ∪X where

• X ∈ I∗ 〈trivial〉
• X 6= Ip 〈Iq 6= Ip, in this case〉
• X 6= ∅ 〈Iq 6= Ip, in this case〉

Because X ∈ I∗, let us assume

X = Is, s ∈ P ({ψ1, . . . , ψn})

So,

Iq = Ip ∪X
= Ip ∪ Is 〈Assumed X = Is〉
= Ip∪s 〈Proposition 2.1〉

Thus,

Dq = I (Iq) 〈item 2〉
= I (Ip∪s) 〈Iq = Ip∪s〉
= I (Ip) ∩ I (Is) 〈Proposition 2.2〉
= Dp ∩ I (Is) 〈item 1〉
( Dp 〈I (Is) 6= ∅〉

Notice I (Is) 6= ∅ otherwise Dq = ∅, contradict-
ing the hypothesis of (Iq, Dq) ∈ L′a.

Therefore, putting the two cases together,

Dq ⊆ Dp

�

Proof of Proposition 2.5
Suppose, by absurd, that there are two elements (Ip, Dp) and (Iq, Dq) of La such that Dp ∩Dq 6= ∅.

Since, by construction of La, all elements belonging to La also belong to L′a, we may use the Propo-
sition 2.3. Then,

(Ip ∪ Iq)Dp ∩Dq ∈ L′a

But, for example, Ip ⊂ Ip ∪ Iq. Thus, by construction of La, (Ip, Dp) 6∈ L′a. Which is Absurd.

∴ Dp ∩Dq = ∅
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